2--deoxyguanosine-5--phosphate and deoxyguanosine-triphosphate

2--deoxyguanosine-5--phosphate has been researched along with deoxyguanosine-triphosphate* in 8 studies

Other Studies

8 other study(ies) available for 2--deoxyguanosine-5--phosphate and deoxyguanosine-triphosphate

ArticleYear
Biosynthesis of (deoxy)guanosine-5'-triphosphate by GMP kinase and acetate kinase fixed on the surface of E. coli.
    Enzyme and microbial technology, 2019, Volume: 122

    (Deoxy)guanosine-5'-triphosphate (5'-(d)GTP), the precursor for synthesizing DNA or RNA in vivo, is an important raw material for various modern biotechnologies based on PCR. In this study, we investigated the application of whole-cell catalysts constructed by bacterial cell surface display in biosynthetic reactions of 5'-(d)GTP from (deoxy)guanosine-5'-monophosphate (5'-(d)GMP). By N-terminal or N- and C-terminal fusion of the ice nucleation protein, we successfully displayed the GMP kinase of Lactobacillus bulgaricus and the acetate kinase of E. coli on the surface of E. coli cells. A large amount of soluble target protein was obtained upon induction with 0.2 mM IPTG at 25 °C for 30 h. The conversion of dGMP was up to 91% when catalysed by the surface-displayed enzymes at 37 °C for 4 h. Up to 95% of the GMP was converted after 3 h of reaction. The stability of the whole-cell catalyst at 37 °C was very good. The enzyme activity was maintained above 50% after 9 rounds of recovery. Our research showed that only one-twentieth of the initial substrate concentration of added ATP was sufficient to meet the reaction requirements.

    Topics: Acetate Kinase; Adenosine Triphosphate; Bacterial Outer Membrane Proteins; Biocatalysis; Deoxyguanine Nucleotides; Enzyme Stability; Escherichia coli; Guanylate Kinases; Lactobacillus delbrueckii; Organophosphates; Recombinant Proteins

2019
Antiviral guanosine analogs as substrates for deoxyguanosine kinase: implications for chemotherapy.
    Antimicrobial agents and chemotherapy, 2001, Volume: 45, Issue:3

    A highly active form of human recombinant deoxyguanosine kinase (dGK) phosphorylated purine nucleoside analogs active against cytomegalovirus, hepatitis B virus, and human immunodeficiency virus, such as penciclovir, 2',3'-dideoxyguanosine and 3'-fluoro-2',3'-dideoxyguanosine. The antiherpesvirus drug ganciclovir, which is also used in gene therapy, was a substrate for dGK, but with low efficiency. ATP and UTP were both good phosphate donors, with apparent K(m) values of 6 and 4 microM and V(max) values of 34 and 90 nmol of dGMP/mg of dGK/min, respectively. With a mixture of 5 mM ATP and 0.05 mM UTP, which represent physiologically relevant concentrations, the activities of dGK with ganciclovir and penciclovir was 1% and approximately 10%, respectively, of that with dGuo. The levels of dGK in different tissues were determined with a selective enzyme assay and the total activities per gram of tissues were similar in liver, brain, heart, and thymus extracts. The fact that the cellular dGK enzyme can phosphorylate antiviral guanosine analogs may help to explain the efficacies and side effects of several forms of chemotherapy.

    Topics: Adenosine Triphosphate; Antiviral Agents; Deoxyguanine Nucleotides; Guanosine; Humans; Phosphotransferases (Alcohol Group Acceptor); Recombinant Proteins; Substrate Specificity; Tissue Distribution; Uridine Triphosphate

2001
Autonomous 3'-->5' exonucleases can proofread for DNA polymerase beta from rat liver.
    Mutation research, 2000, Apr-28, Volume: 459, Issue:3

    Autonomous 3'-->5'exonucleases are not bound covalently to DNA polymerases but are often involved in replicative complexes. Such exonucleases from rat liver, calf thymus and Escherichia coli (molecular masses of 28+/-2 kDa) are shown to increase more than 10-fold the accuracy of DNA polymerase beta (the most inaccurate mammalian polymerase) from rat liver in the course of reduplication of the primed DNA of bacteriophage phiX174 amber 3 in vitro. The extent of correction increases together with the rise in 3'-->5' exonuclease concentration. Extrapolation of the in vitro DNA replication fidelity to the cellular levels of rat exonuclease and beta-polymerase suggests that exonucleolytic proofreading could augment the accuracy of DNA synthesis by two orders of magnitude. These results are not explained by exonucleolytic degradation of the primers ("no synthesis-no errors"), since similar data are obtained with the use of the primers 15 or 150 nucleotides long in the course of a fidelity assay of DNA polymerases, both alpha and beta, in the presence of various concentrations of 3'-->5' exonuclease.

    Topics: Animals; Bacteriophage phi X 174; Cattle; Chromatin; Chromatography, Gel; Cytosol; Deoxyguanine Nucleotides; DNA Polymerase beta; DNA Polymerase I; DNA Repair; DNA Replication; Electrophoresis, Polyacrylamide Gel; Escherichia coli; Exodeoxyribonuclease V; Exodeoxyribonucleases; Liver; Male; Molecular Weight; Mutagenicity Tests; Rats; Regression Analysis; Thymus Gland; Transcription, Genetic

2000
NMR and isotopic exchange studies of the site of bond cleavage in the MutT reaction.
    The Journal of biological chemistry, 1992, Aug-25, Volume: 267, Issue:24

    The MutT protein, which prevents AT----CG transversions during DNA replication, hydrolyzes nucleoside triphosphates to yield nucleoside monophosphates and pyrophosphate. The hydrolysis of dGTP by the MutT protein in H(2)18O-enriched water, when monitored by high resolution 31P NMR spectroscopy at 242.9 MHz, showed 18O labeling of the pyrophosphate product, as manifested by a 0.010 +/- 0.002 ppm upfield shift of the pyrophosphate resonance, and no labeling of the dGMP product. This establishes that the reaction proceeds via a nucleophilic substitution at the beta-phosphorus of dGTP with displacement of dGMP as the leaving group. No exchange of 32P-labeled dGMP into dGTP was detected, indicating that water attacks dGTP directly or, less likely, an irreversibly formed pyrophosphoryl-enzyme intermediate. No exchange of 32P-labeled pyrophosphate into dGTP was observed, consistent with nucleophilic substitution at the beta-phosphorus of dGTP. Only six enzymes, all synthetases, have previously been shown to catalyze nucleophilic substitution at the beta-phosphorus of nucleoside triphosphate substrates. The MutT protein is the first hydrolase shown to do so.

    Topics: Bacterial Proteins; Deoxyguanine Nucleotides; Diphosphates; DNA Repair; Escherichia coli; Escherichia coli Proteins; Hydrolysis; Isotope Labeling; Magnetic Resonance Spectroscopy; Oxygen Isotopes; Phosphoric Monoester Hydrolases; Pyrophosphatases; Water

1992
Thermodynamics of A:G mismatch poly(dG) synthesis by human immunodeficiency virus 1 reverse transcriptase.
    The Journal of biological chemistry, 1991, Feb-25, Volume: 266, Issue:6

    Human immunodeficiency virus 1 (HIV-1) reverse transcriptase has been found to conduct error-prone synthesis on DNA and RNA templates. We find here that tolerance of an A:G mispair with poly(rA) as template is particularly strong, such that extensive poly(dG) synthesis is conducted. This type of extensive misincorporation is not observed with several reference DNA polymerases. Surprisingly, HIV reverse transcriptase processivity and kcat for dGMP misincorporation and normal dTMP incorporation are about the same. However, the Km value for dGTP in poly(dG) synthesis is approximately 1000-fold higher than the Km for dTTP in poly(dT) synthesis. Comparison of thermodynamic parameters for dGMP misincorporation and normal dNMP incorporation indicates a lower energy of activation for dGMP misincorporation than for normal dNMP incorporation. Entropy of activation (delta S*) for normal dTMP incorporation is positive (approximately 10 cal/kmol), whereas delta S* for dGMP misincorporation is negative (-36 cal/kmol). Since differences in delta S* are usually considered to reflect differences in solvation for the transition state complex, these results are consistent with the interpretation that the active site of HIV reverse transcriptase is flexible enough to misincorporate dGMP without the usual dispersion of water molecules.

    Topics: Autoradiography; Chromatography, Thin Layer; Deoxyguanine Nucleotides; HIV-1; Kinetics; Poly G; RNA-Directed DNA Polymerase; Temperature; Templates, Genetic; Thermodynamics

1991
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools.
    The Journal of biological chemistry, 1987, Apr-15, Volume: 262, Issue:11

    The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.

    Topics: Deoxyguanine Nucleotides; Deoxyribonucleotides; DNA Replication; DNA, Viral; Escherichia coli; T-Phages; Viral Proteins

1987
Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Journal of molecular biology, 1986, Jun-05, Volume: 189, Issue:3

    When Escherichia coli DNA polymerase I (Pol I) replicates a homopolymer, the excision/polymerization (exo/pol) ratio varies with enzyme and initiator concentration. The study of this effect in the case of poly(dA).oligo(dT) replication led us to propose a mnemonic model for Pol I, in which the 3' to 5' excision activity warms up when the enzyme is actively polymerizing, and cools down when it dissociates from the template. The model predicts that the exo/pol ratio must increase with processivity length and initiator concentration and decrease with enzyme concentration. It predicts also that contact of the enzyme with one template alters its excision efficiency towards another template. The exo/pol ratio and processivities of Pol I and its Klenow fragment were studied on four templates: poly(dA).(dT)10, poly(dT).(dA)10, poly(dC).(dG)10 and poly(dI).(dC)10. We show that the Klenow fragment is usually much less processive than Pol I and when this is the case it has a much lower exo/pol ratio. At equal processivity, the exo/pol ratios are nearly equal. Furthermore, many factors that influence processivity length (e.g. manganese versus magnesium, inorganic pyrophosphate, ionic strength) influence the exo/pol ratio in the same direction. The study of deaminated poly(dC) replication, where we followed incorporation and excision of both G and A residues, allowed us to assign the origin of the dNMP variations to changes in the 3' to 5' proof-reading activity of Pol I. Similarly, the lower dNMP turnover of the Klenow fragment observed with deaminated poly(dC) was specifically assigned to a decreased 3' to 5' exonuclease activity. The exo/pol ratio generally increased with initiator and decreased with enzyme concentration, in agreement with the model, except for poly(dI).oligo(dC), where it decreased with initiator concentration. However, by terminating chain elongation with dideoxy CTP, we showed directly that, even in this system, excision is relatively inefficient at the beginning of synthesis. Interaction of Pol I with poly(dA).(dT) or with poly(dC).(dG) modifies its exo/pol characteristics in the replication of poly(dI).(dC) and poly(dA).(dT), respectively. The Klenow enzyme is not sensitive to such influences and this correlates with its reduced processivity on the influencing templates. Our results reveal the existence of differences between Pol I and its Klenow fragment that are more profound than has been thought previously.(ABSTRACT TRUNCATED AT 400 WORDS)

    Topics: Base Composition; Deoxyadenine Nucleotides; Deoxycytidine Monophosphate; Deoxyguanine Nucleotides; DNA Polymerase I; DNA Replication; Escherichia coli; Kinetics; Models, Biological; Poly dA-dT; Templates, Genetic; Thymine Nucleotides

1986
Conversion of dNTP to dNMP dependent on DNA synthesis in isolated Yoshida sarcoma nuclei.
    Biochimica et biophysica acta, 1982, Mar-29, Volume: 696, Issue:3

    Nuclei isolated from Yoshida sarcoma cells had activity for conversion of dGTP dependent on DNA synthesis. The ratio of nucleotide generation/generation + incorporation was 0.4 +/0- 0.1, indicating that approx. 40% of the incorporated dGMP was excised. Two lines of evidence indicated the dependence of this activity on DNA synthesis. (1) The activity was observed only in the presence of ATP, which is essential for nuclear DNA synthesis. (2) Inhibitors of DNA synthesis, such as N-ethylmaleimide, aphidicolin, spermine and KCl, also inhibited ATP- or DNA synthesis-dependent dGMP generation. Although nuclei contain nucleoside triphosphatase (N-nucleotidase), this enzyme was not involved appreciably in DNA synthesis-dependent dGMP generation. The reason for this was explained by the following findings. (a) Inhibitors did not decrease dGMP production in the complete absence of DNA synthesis. (b) Inhibitors did not inactivate N-nucleotidase to the same degree as they inhibited DNA synthesis-dependent dGMP generation. (c) Addition of ATP reduced dGMP hydrolysis catalyzed by N-nucleotidase. (d) GDP has no appreciable effect on DNA synthesis-dependent dGMP generation, but had a diluting effect on dGMP production catalyzed by N-nucleotidase. These results show that the pathway of dGMP generation in isolated nuclei was switched on addition of ATP from a N-nucleotidase-catalyzed one to a DNA polymerase-exonuclease-catalyzed one.

    Topics: Adenosine Triphosphate; Animals; Cell Nucleus; Deoxyguanine Nucleotides; Deoxyribonucleotides; DNA Replication; Ethylmaleimide; Kinetics; Mice; Sarcoma, Yoshida

1982