2--7--dichlorodihydrofluorescein has been researched along with diacetyldichlorofluorescein* in 2 studies
2 other study(ies) available for 2--7--dichlorodihydrofluorescein and diacetyldichlorofluorescein
Article | Year |
---|---|
Adaptation of the dichlorofluorescein assay for detection of radiation-induced oxidative stress in cultured cells.
The oxidation of 2'7'-dichlorofluorescin (DCFH) to 2'7'-dichlorofluorescein (DCF), a fluorescent DCFH oxidation product, is a highly sensitive indicator that is used to measure oxidative stress in cells. In the present study, a DCF assay has been adapted to quantify oxidative stress in human breast epithelial cell cultures after exposure to gamma rays. The results demonstrate that the sensitivity and specificity of the DCF assay is strongly influenced by the timing of DCFH diacetate (DCFH-DA) substrate loading in relation to radiation exposure and by the matrix in which the cells were loaded with DCFH-DA substrate. Under the conditions optimized in this study, the DCF assay is capable of detecting increased DCFH oxidation in cell cultures irradiated with gamma rays at a dose as low as 1.5 cGy. The increase in fluorescence was directly proportional to the radiation dose, which ranged from 0 to 2 Gy, and a minimal level of fluorescence was observed in sham-irradiated cells. These results indicate that the DCF assay optimized in this study is highly sensitive, linear and specific for measuring oxidative stress in irradiated cells. Topics: Breast Neoplasms; Cell Line, Tumor; Female; Fluoresceins; Fluorescence; Humans; Oxidation-Reduction; Oxidative Stress | 2003 |
Effects of glutathione and pH on the oxidation of biomarkers of cellular oxidative stress.
Cellular oxidative stress is associated with such pathological conditions as arteriosclerosis, inflammatory diseases and cancer. The oxidation of the biomarkers. 2',7'-dichlorofluorescin (DCFH), 2-deoxyribose, and lipid peroxidation are often used to assess the status of oxidative stress in cells and tissues. Since high levels of reduced glutathione (GSH) and acidic conditions have been associated with diminished chemical lethality, we evaluated the influence of these parameters on the cellular response to oxidative stress. We used a cultured hepatocyte line (ch/ch cells) that is susceptible to oxidative toxicity. A hydroxyl radical-generating system consisting of H2O2, ascorbate and iron produced a pH-dependent lethality, with complete cell killing at pH 7.4 and none at pH 6.8. Lethality correlated with the depletion of intracellular GSH, and with an increase in DNA fragmentation. The influence of GSH and pH was assessed for DCFH and 2-deoxyribose oxidation, and for lipid peroxidation. The oxidation of DCFH and 2-deoxyribose was inhibited by GSH, with about 4-fold greater inhibition efficacy at pH 6.8 than at pH 7.4 [IC50 values (microM GSH) for pH 6.8 and 7.4, respectively: DCFH = 7 and 30; 2-deoxyribose = 125 and 490]. GSH did not affect lipid peroxidation at either pH, even at a high intracellular concentration of 10 mM. We conclude: 1) GSH is not inhibiting DCFH and 2-deoxyribose oxidation by simply quenching reactive oxygen (hydroxyl radical or perferryl oxygen), since GSH did not inhibit lipid peroxidation: 2) the protonated form GSH is more likely to be the inhibitory species rather than GS-, since even in the simple cell-free systems lower pH inhibited biomarker oxidation; and; 3) hydroxyl radical may not be the primary intracellular oxidant of DCFH, since intracellular GSH concentrations are typically 10- to 100-fold higher than the IC50 values for GSH inhibiting reactive oxygen-mediated DCFH oxidation. Topics: Animals; Biomarkers; Cells, Cultured; Deoxyribose; Fluoresceins; Glutathione; Hydrogen-Ion Concentration; Lipid Peroxidation; Liver; Oxidation-Reduction; Oxidative Stress | 1996 |