2--7--bis-(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl-ester has been researched along with phenylamil* in 1 studies
1 other study(ies) available for 2--7--bis-(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl-ester and phenylamil
Article | Year |
---|---|
Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake.
Isolated mitochondria-rich (MR) cells from the rainbow trout gill epithelium were subjected to intracellular pH (pH(i)) imaging with the pH-sensitive dye BCECF-AM. MR cells were categorized into two distinct functional subtypes based on their ability to recover pH(i) from an NH(4)Cl-induced acidification in the absence of Na(+). An apparent link between resting pH(i) and Na(+)-independent pH(i) recovery was made. We observed a unique pH(i) acidification event that was induced by extracellular Na(+) addition. This further classified the mixed MR cell population into two functional subtypes: the majority of cells (77%) demonstrated the Na(+)-induced pH(i) acidification, whereas the minority (23%) demonstrated an alkalinization of pH(i) under the same circumstances. The focus of this study was placed on the Na(+)-induced acidification and pharmacological analysis via the use of amiloride and phenamil, which revealed that Na(+) uptake was responsible for the intracellular acidification. Further experiments revealed that pH(i) acidification could be abolished when Na(+) was allowed entry into the cell, but the activity of an electrogenic Na(+)-HCO(3)(-) cotransporter (NBC) was inhibited by DIDS. The electrogenic NBC activity was supported by a DIDS-sensitive, Na(+)-induced membrane potential depolarization as observed via imaging of the voltage-sensitive dye bis-oxonol. We also demonstrated NBC immunoreactivity via Western blotting and immunohistochemistry in gill tissue. We propose a model for transepithelial Na(+) uptake occurring via an apical Na(+) channel linked to a basolateral, electrogenic NBC in one subpopulation of MR cells. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Amiloride; Animals; Bicarbonates; Cell Survival; Epithelial Cells; Fluoresceins; Fluorescent Dyes; Gills; Hydrogen-Ion Concentration; In Vitro Techniques; Ion Channel Gating; Ion Transport; Membrane Potentials; Mitochondria; Models, Animal; Oncorhynchus mykiss; Sodium; Sodium Channels; Sodium-Bicarbonate Symporters | 2007 |