2-(4-amylcinnamoyl)amino-4-chlorobenzoic-acid and arachidonyltrifluoromethane

2-(4-amylcinnamoyl)amino-4-chlorobenzoic-acid has been researched along with arachidonyltrifluoromethane* in 3 studies

Other Studies

3 other study(ies) available for 2-(4-amylcinnamoyl)amino-4-chlorobenzoic-acid and arachidonyltrifluoromethane

ArticleYear
Arachidonyltrifluoromethy ketone, a phospholipase A(2) antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm.
    Biochemical and biophysical research communications, 2001, Feb-23, Volume: 281, Issue:2

    Arachidonyltrifluoromethy ketone (AACOCF(3)), a phospholipase A(2) antagonist, reversibly induced dispersal of Golgi stack- and trans Golgi network (TGN)-resident proteins throughout the cytoplasm in NRK cells as followed by immunocytochemical staining of ManII and TGN38, respectively. The action of AACOCF(3) was partly blocked by other PLA(2) antagonists, suggesting it be not caused by a general inhibition of phospholipase A(2). AACOCF(3) neither dissociated beta-COP from membranes nor prevented brefeldin A-induced beta-COP release. Action of AACOCF(3) on the Golgi stack and TGN is different from that of brefeldin A and nordihydroguaiaretic acid. The most prominent difference is that the Golgi stack and TGN showed a similar sensitivity to AACOCF(3), while the TGN was dispersed more slowly than the Golgi stack in brefeldin A- or nordihydroguaiaretic acid-treated NRK cells. This novel action of AACOCF(3) may be used as pharmacological tool and give new insights into vesicle-mediated traffic and Golgi membrane dynamics.

    Topics: Aminobenzoates; Animals; Arachidonic Acids; Biological Transport; Brefeldin A; Cell Line; Chlorobenzoates; Cinnamates; Coatomer Protein; Cytoplasm; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Enzyme Inhibitors; Golgi Apparatus; Masoprocol; Membrane Proteins; Microscopy, Fluorescence; Naphthalenes; ortho-Aminobenzoates; Phospholipases A; Pyrones; Time Factors

2001
Calcium-independent phospholipase A(2) is required for human monocyte chemotaxis to monocyte chemoattractant protein 1.
    Journal of immunology (Baltimore, Md. : 1950), 2001, Sep-15, Volume: 167, Issue:6

    Monocyte chemoattractant protein 1 (MCP-1) has an important influence on monocyte migration into sites of inflammation. Our understanding of the signal transduction pathways involved in the response of monocytes to MCP-1 is quite limited yet potentially significant for understanding and manipulating the inflammatory response. Prior studies have demonstrated a crucial regulatory role for cytosolic phospholipase A(2) (cPLA(2)) in monocyte chemotaxis to MCP-1. In these studies we investigated the role for another PLA(2), calcium-independent PLA(2) (iPLA(2)) in comparison to cPLA(2). Pharmacological inhibitors of PLA(2) were found to substantially inhibit chemotaxis. Using antisense oligodeoxyribonucleotide treatment we found that iPLA(2) expression is required for monocyte migration to MCP-1. Complete blocking of the chemotactic response was observed with inhibition of either iPLA(2) or cPLA(2) expression by their respective antisense oligodeoxyribonucleotide. In reconstitution experiments, lysophosphatidic acid completely restored MCP-1-stimulated migration in iPLA(2)-deficient monocytes, whereas lysophosphatidic acid was without effect in restoring migration in cPLA(2)-deficient monocytes. To the contrary, arachidonic acid fully restored migration of cPLA(2)-deficient monocytes while having no effect on the iPLA(2)-deficient monocytes. Additional studies revealed that neither enzyme appears to be upstream of the other indicating that iPLA(2) and cPLA(2) represent parallel regulatory pathways. These data demonstrate novel and distinct roles for these two phospholipases in this critical step in inflammation.

    Topics: Aminobenzoates; Arachidonic Acid; Arachidonic Acids; Aristolochic Acids; Chemokine CCL2; Chemotaxis, Leukocyte; Chlorobenzoates; Cinnamates; Enzyme Inhibitors; Fatty Acids; Group IV Phospholipases A2; Group VI Phospholipases A2; Humans; Inflammation; Lysophospholipids; Monocytes; Naphthalenes; Oligodeoxyribonucleotides, Antisense; ortho-Aminobenzoates; Phenanthrenes; Phospholipases A; Pyrones; Signal Transduction

2001
Human fetal skin fibroblast migration stimulated by the autocrine growth factor bFGF is mediated by phospholipase A(2) via arachidonic acid without the involvement of pertussis toxin-sensitive G-protein.
    Biochemical and biophysical research communications, 2000, Jun-16, Volume: 272, Issue:3

    We reported previously that human fetal skin fibroblast migration into a denuded area was stimulated by an autocrine factor, basic fibroblast growth factor (bFGF). Since the signal transduction pathway of this migration is unknown, we attempted to clarify it by comparing this fibroblast migration with a previously reported bovine endothelial cell migration into a wounded area stimulated by an addition of bFGF, in which the bFGF signal was mediated by phospholipase A(2)-coupled G-protein and phospholipase A(2) (PLA(2)) via arachidonic acid. Our study demonstrated that pertussis toxin, a specific inhibitor of PLA(2)-coupled G-protein, did not suppress human fetal skin fibroblast migration, but 2-(p-amylcinnamyl)amino-4-chlorobensoic acid (ONO-RS-082), a PLA(2) inhibitor, did. Since ONO-RS-082 is a non-specific PLA(2) inhibitor, a cytoplasmic, Ca-dependent PLA(2) (cPLA(2)) inhibitor, AACOCF3, was examined. AACOCF3 suppressed cell migration in certain concentrations. The PLA(2) inhibitor-suppressed cell migration was restored by adding arachidonic acid, and cell migration suppressed by anti-bFGF antibodies was restored by adding arachidonic acid. In addition, pertussis toxin did not suppress arachidonic acid release, which shows an action of PLA(2), but AACOCF3 did. These results indicate that human fetal skin fibroblast migration stimulated by an autocrine factor, bFGF, was mediated by PLA(2) via arachidonic acid without the involvement of PLA(2)-coupled G-protein.

    Topics: Aminobenzoates; Animals; Antibodies; Arachidonic Acid; Arachidonic Acids; Autocrine Communication; Cell Movement; Cells, Cultured; Chlorobenzoates; Cinnamates; Fibroblast Growth Factor 2; Fibroblasts; Heterotrimeric GTP-Binding Proteins; Humans; Inhibitory Concentration 50; Male; ortho-Aminobenzoates; Pertussis Toxin; Phospholipases A; Signal Transduction; Skin; Virulence Factors, Bordetella

2000