1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one and sphingosine

1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one has been researched along with sphingosine in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Barsacchi, R; Cantoni, O; Clementi, E; De Nadai, C; Lièvremont, JP; Meldolesi, J; Moncada, S; Sciorati, C; Sestili, P1

Other Studies

2 other study(ies) available for 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one and sphingosine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide.
    Proceedings of the National Academy of Sciences of the United States of America, 2000, May-09, Volume: 97, Issue:10

    Topics: Antigens, CD; Apoptosis; Caspase 8; Caspase 9; Caspases; Ceramides; Cyclic GMP; Enzyme Inhibitors; Humans; Kinetics; Nitric Oxide; Nitric Oxide Donors; Oxadiazoles; Penicillamine; Proteins; Quinoxalines; Receptors, Tumor Necrosis Factor; Receptors, Tumor Necrosis Factor, Type I; S-Nitroso-N-Acetylpenicillamine; Second Messenger Systems; Signal Transduction; Sphingosine; TNF Receptor-Associated Factor 1; Tumor Necrosis Factor-alpha; U937 Cells

2000