1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one and rolipram

1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one has been researched along with rolipram in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (25.00)18.2507
2000's3 (75.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Cunha, FQ; Ferreira, SH; Teixeira, MM1
Bessard, G; Bréant, D; Caron, F; Corompt, E; Devillier, P1
Barahona, MV; Benedito, S; García-Sacristán, A; Hernández, M; Martínez, AC; Orensanz, LM; Prieto, D; Recio, P; Rivera, L1

Other Studies

4 other study(ies) available for 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one and rolipram

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Pharmacological modulation of secondary mediator systems--cyclic AMP and cyclic GMP--on inflammatory hyperalgesia.
    British journal of pharmacology, 1999, Volume: 127, Issue:3

    Topics: Animals; Bradykinin; Carrageenan; Cyclic AMP; Cyclic GMP; Dinoprostone; Dopamine; Hyperalgesia; Inflammation; Interleukin-1; Interleukin-6; Interleukin-8; Isoquinolines; Male; Oxadiazoles; Phosphodiesterase Inhibitors; Pyrrolidinones; Quinoxalines; Rats; Rats, Wistar; Rolipram; Second Messenger Systems; Sulfonamides; Tumor Necrosis Factor-alpha

1999
Relaxation and modulation of cyclic AMP production in response to atrial natriuretic peptides in guinea pig tracheal smooth muscle.
    European journal of pharmacology, 2001, Nov-02, Volume: 430, Issue:2-3

    Topics: Adenylyl Cyclases; Animals; Apamin; Atrial Natriuretic Factor; Colforsin; Cyclic AMP; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Glyburide; Guanylate Cyclase; Guinea Pigs; Histamine; In Vitro Techniques; Male; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Natriuretic Peptide, C-Type; Nitroprusside; Oxadiazoles; Peptide Fragments; Peptides; Phosphodiesterase Inhibitors; Potassium Channel Blockers; Quinoxalines; Rolipram; Trachea

2001
Heterogeneity of neuronal and smooth muscle receptors involved in the VIP- and PACAP-induced relaxations of the pig intravesical ureter.
    British journal of pharmacology, 2004, Volume: 141, Issue:1

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Apamin; Capsaicin; Charybdotoxin; Colforsin; Cyclic AMP; Dose-Response Relationship, Drug; Drug Synergism; Female; Guanylate Cyclase; Male; Muscle, Smooth; Neurons, Afferent; Neuropeptide Y; Neuropeptides; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; omega-Conotoxin GVIA; Oxadiazoles; Peptide Fragments; Pituitary Adenylate Cyclase-Activating Polypeptide; Potassium Channels, Calcium-Activated; Quinoxalines; Receptors, Calcitonin Gene-Related Peptide; Receptors, Peptide; Receptors, Vasoactive Intestinal Peptide; Rolipram; Sensory Receptor Cells; Swine; Tetraethylammonium; Ureter; Vasoactive Intestinal Peptide

2004