1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one has been researched along with n(6)-cyclopentyladenosine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Assaloni, R; Bartoli, E; Cavarape, A; Endlich, K; Endlich, N; Parekh, N; Steinhausen, M | 1 |
Fragata, IR; Ribeiro, JA; SebastiĆ£o, AM | 1 |
4 other study(ies) available for 1h-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one and n(6)-cyclopentyladenosine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Rho-kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo.
Topics: Adenosine; Amides; Animals; Endothelins; Enzyme Inhibitors; Female; Guanylate Cyclase; Indoles; Intracellular Signaling Peptides and Proteins; Oxadiazoles; Peptide Fragments; Protein Kinase C; Protein Serine-Threonine Kinases; Purinergic P1 Receptor Agonists; Pyridines; Quinoxalines; Rats; Rats, Wistar; Receptor, Endothelin B; Receptors, Endothelin; Renal Circulation; rho-Associated Kinases; Signal Transduction; Vasoconstriction; Vasomotor System | 2003 |
Nitric oxide mediates interactions between GABAA receptors and adenosine A1 receptors in the rat hippocampus.
Topics: 2-Chloroadenosine; Adenosine; Animals; Bicuculline; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Postsynaptic Potentials; GABA Antagonists; gamma-Aminobutyric Acid; Guanylate Cyclase; Hippocampus; In Vitro Techniques; Male; Neural Inhibition; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Oxadiazoles; Penicillamine; Quinoxalines; Rats; Rats, Wistar; Receptor, Adenosine A1; Receptors, GABA-A; Synaptic Transmission | 2006 |