1843u89 and lometrexol

1843u89 has been researched along with lometrexol* in 3 studies

Reviews

2 review(s) available for 1843u89 and lometrexol

ArticleYear
Clinical pharmacokinetics of antitumor antifolates.
    Seminars in oncology, 1999, Volume: 26, Issue:2 Suppl 6

    Antifolate drugs, as a class, have broad-spectrum activity against both hematologic and solid human malignancies. The pharmacokinetics of the classical antifolate methotrexate have been well-defined and pharmacokinetic data can be exploited to reduce the toxicity and enhance the activity of the drug. Methotrexate remains the only anticancer drug for which plasma drug level monitoring is used in routine clinical practice. Recently, novel classical and nonclassical antifolates have been developed that target either specific folate-dependent enzymes (e.g., thymidylate synthase [CB3717, raltitrexed, ZD9331, 1843U89, nolatrexed, AG331], glycinamide ribonucleotide transformylase [lometrexol, LY309887, AG2034] or multiple folate-dependent enzymes (e.g., MTA/LY231514). In the early clinical trials of these agents, a number of pharmacokinetic-pharmacodynamic relationships were identified and it is highly likely that the full therapeutic potential of these new drugs will also require the exploitation of pharmacokinetic data.

    Topics: Antimetabolites, Antineoplastic; Enzyme Inhibitors; Folic Acid; Folic Acid Antagonists; Humans; Indoles; Isoindoles; Methotrexate; Quinazolines; Tetrahydrofolates; Thiophenes; Thymidylate Synthase

1999
Antifolates in clinical development.
    Seminars in oncology, 1997, Volume: 24, Issue:5 Suppl 18

    Many novel antifolate compounds with unique pharmacologic properties are currently in clinical development. These newer antifolates differ from methotrexate, the most widely used and studied drug in this class, in terms of their lipid solubility and cellular transport affinity, their level of polyglutamation, and their specificity for inhibiting folate-dependent enzymes, such as dihydrofolate reductase, thymidylate synthase, or glycinamide ribonucleotide formyltransferase. The current status (ie, mechanism of action, clinical response rates, and toxicity) of some of the newer antifolate compounds presently in clinical testing, including edatrexate, piritrexim, raltritrexed, LY 231514, AG337, AG331, 1843U89, ZD 9331, and lometrexol, is reviewed.

    Topics: Aminopterin; Animals; Antimetabolites, Antineoplastic; Clinical Trials as Topic; Drug Design; Enzyme Inhibitors; Folic Acid Antagonists; Glutamates; Guanine; Humans; Indoles; Isoindoles; Pemetrexed; Pyrimidines; Quinazolines; Tetrahydrofolates; Thiophenes; Thymidylate Synthase

1997

Other Studies

1 other study(ies) available for 1843u89 and lometrexol

ArticleYear
Antitumor activity of antifolate inhibitors of thymidylate and purine synthesis in human soft tissue sarcoma cell lines with intrinsic resistance to methotrexate.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 1995, Volume: 1, Issue:6

    We examined the antitumor effects of two antifolate inhibitors of thymidylate synthesis, N-(5-[N-(3, 4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino ]-2-theno yl-L-glutamic acid (D1694; Tomudex) and 1843U89 as well as a folate-based inhibitor of purine synthesis, 5, 10-dideazatetrahydrofolic acid (DDATHF) on human soft tissue sarcoma cell lines having intrinsic resistance to methotrexate (MTX) due to impaired accumulation of polyglutamates of MTX (HS-16 and HS-42 cells) and to increased levels of dihydrofolate reductase and thymidylate synthase activity (HS-18 cells). Growth inhibition studies showed that ED50 values for D1694 and 1843U89 after a 24-h exposure were 11-19-fold and 22-222-fold lower, respectively, than those for MTX in HT-1080, a MTX-sensitive cell line, and the three MTX-resistant cell lines. In contrast, DDATHF was less cytotoxic than MTX in both the MTX-sensitive and the three resistant sarcoma cell lines. Uptake of D1694, 1843U89, or DDATHF was 2.5-4.5-fold higher than MTX in these sarcoma cell lines. However, D1694 and 1843U89, unlike MTX, accumulate in HS-16 and HS-42 cells as polyglutamate forms, reaching 70% of the total intracellular drug level after 24 h. DDATHF polyglutamates (9.4-24%) were less in the same cell lines. Much lower Km values for D1694 and 1843U89 as compared to MTX for folylpolyglutamate synthase were measured in the sarcoma cell lines, with Vmax values equal to or slightly higher than those obtained with MTX. D1694 and 1843U89 are significantly more cytotoxic than MTX in intrinsically MTX-resistant sarcoma cell lines as a result of extensive formation of polyglutamates. These two thymidylate synthase inhibitors should be evaluated in patients with soft tissue sarcomas.

    Topics: Antimetabolites, Antineoplastic; Antineoplastic Agents; Biological Transport; Biotransformation; Cell Division; Cell Survival; Drug Resistance, Neoplasm; Folic Acid Antagonists; Humans; Indoles; Isoindoles; Kinetics; Methotrexate; Purines; Quinazolines; Sarcoma; Tetrahydrofolates; Thiophenes; Thymidine Monophosphate; Tumor Cells, Cultured

1995