18-crown-6-2-3-11-12-tetracarboxylic-acid has been researched along with acetonitrile* in 3 studies
3 other study(ies) available for 18-crown-6-2-3-11-12-tetracarboxylic-acid and acetonitrile
Article | Year |
---|---|
Liquid chromatographic resolution of fendiline and its analogues on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid.
Fendiline, an effective anti-anginal drug for the treatment of coronary heart diseases, and its sixteen analogues were resolved on a CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Fendiline was resolved quite well with the separation factor (α) of 1.25 and resolution (RS) of 1.55 when a mobile phase consisting of methanol-acetonitrile-trifluoroacetic acid-triethylamine at a ratio of 80/20/0.1/0.5 (v/v/v/v) was used. The comparison of the chromatographic behaviors for the resolution of fendiline and its analogues indicated that the 3,3-diphenylpropyl group bonded to the secondary amino group of fendiline is important in the chiral recognition and the difference in the steric bulkiness between the phenyl group and the methyl group at the chiral center of fendiline is also important in the chiral recognition. Topics: Acetonitriles; Cardiovascular Agents; Chromatography, Liquid; Crown Ethers; Ethylamines; Fendiline; Methanol; Solvents; Trifluoroacetic Acid | 2014 |
Liquid chromatographic resolution of 1-aryl-1,2,3,4-tetrahydroisoquinolines on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid.
A liquid chromatographic chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was applied for the first time to the resolution of biologically important 1-aryl-1,2,3,4-tetrahydroisoquinolines. The unusual resolution of cyclic secondary amino compounds on a chiral crown ether-based CSP was quite successful with the use of a mixture of methanol-acetonitrile-triethylamine at a ratio of 30/70/0.5 (v/v/v) as a mobile phase. From the chromatographic behaviours for the resolution of seven 1-aryl-1,2,3,4-tetrahydroisoquinolines, the steric bulkiness of the 1-phenyl ring at the chiral center of analytes was concluded to play an important role in the chiral recognition. Topics: Acetonitriles; Chromatography, Liquid; Crown Ethers; Ethylamines; Methanol; Stereoisomerism; Tetrahydroisoquinolines | 2011 |
Unusual resolution of N-(3,5-dinitrobenzoyl)-alpha-amino acids on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid.
While HPLC chiral stationary phases (CSPs) based on chiral crown ethers have been known useful for the resolution of only racemic primary amino compounds or some secondary amino compounds, in this study, we first demonstrated that the CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid is also useful for the resolution of N-benzoyl-alpha-amino acids, which do not contain a primary or secondary amino group. Especially, N-(3,5-dinitrobenzoyl)-alpha-amino acids were resolved better than corresponding N-(3-nitrobenzoyl)- or N-benzoyl-alpha-amino acids, the separation (alpha) and the resolution factors (R(S)) for the resolution of eight N-(3,5-dinitrobenzoyl)-alpha-amino acids being in the range of 1.06-1.81 and 0.54-2.81, respectively. The optimum mobile phase condition was the mixture of acetic acid-triethylamine-acetonitrile with the ratio of 0.05/0.25/100 (v/v/v). Topics: Acetic Acid; Acetonitriles; Amino Acids; Chromatography, High Pressure Liquid; Crown Ethers; Ethylamines; Molecular Structure; Nitrobenzoates; Reproducibility of Results | 2005 |