17-18-epoxy-5-8-11-14-eicosatetraenoic-acid and 14-15-epoxy-5-8-11-eicosatrienoic-acid

17-18-epoxy-5-8-11-14-eicosatetraenoic-acid has been researched along with 14-15-epoxy-5-8-11-eicosatrienoic-acid* in 1 studies

Other Studies

1 other study(ies) available for 17-18-epoxy-5-8-11-14-eicosatetraenoic-acid and 14-15-epoxy-5-8-11-eicosatrienoic-acid

ArticleYear
17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase.
    American journal of respiratory cell and molecular biology, 2010, Volume: 43, Issue:5

    This study sought to assess putative pathways involved in the anti-inflammatory effects of 17,18-epoxyeicosatetraenoic acid (17,18-EpETE), as measured by a decrease in the contractile reactivity and Ca(2+) sensitivity of TNF-α-pretreated human bronchi. Tension measurements performed in the presence of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a soluble epoxide hydrolase (sEH)-specific inhibitor, demonstrated that 17,18-EpETE reduced the reactivity of TNF-α-pretreated tissues. The overexpression of sEH detected in patients with asthma and TNF-α-treated bronchi contributed to the maintenance of hyperresponsiveness in our models, which involved intracellular proinflammatory cascades. The inhibition of peroxisome proliferator-activated receptor (PPAR)γ by GW9662 abolished 17,18-EpETE + AUDA-mediated anti-inflammatory effects by inducing IκBα degradation and cytokine synthesis, indicating that PPARγ is a molecular target of epoxy-eicosanoids. Western blot analysis revealed that 17,18-EpETE pretreatment reversed the phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) induced by TNF-α in human bronchi. The Ca(2+) sensitivity of human bronchial explants was also quantified on β-escin permeabilized preparations. The presence of SB203580, a p38-MAPK inhibitor, reversed the effect induced by epoxy-eicosanoid in the presence of AUDA on TNF-α-triggered Ca(2+) hypersensitivity by increasing the phosphorylation level of PKC Potentiated Inhibitor Protein-17 (CPI-17) regulatory protein. Moreover, PPARγ ligands, such as rosiglitazone and 17,18-EpETE, decreased the expression of CPI-17, both at the mRNA and protein levels, whereas this effect was countered by GW9662 treatment in TNF-α-treated bronchi. These results demonstrate that 17,18-EpETE is a potent regulator of human lung inflammation and concomitant hyperresponsiveness, and may represent a valuable asset against critical inflammatory bronchial disorder.

    Topics: 8,11,14-Eicosatrienoic Acid; Anti-Inflammatory Agents; Arachidonic Acids; Bronchi; Calcium; Cyclooxygenase 2; Epoxide Hydrolases; Humans; Intracellular Signaling Peptides and Proteins; Lung; Models, Biological; Muscle Proteins; Myosin-Light-Chain Phosphatase; p38 Mitogen-Activated Protein Kinases; Phosphoprotein Phosphatases; Phosphorylation; Pneumonia; PPAR gamma; Protein Kinase Inhibitors; Solubility; Tumor Necrosis Factor-alpha

2010