15-hydroxy-5-8-11-13-eicosatetraenoic-acid has been researched along with 20-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 4 studies
4 other study(ies) available for 15-hydroxy-5-8-11-13-eicosatetraenoic-acid and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid
Article | Year |
---|---|
Exercise-Induced Changes in Bioactive Lipids Might Serve as Potential Predictors of Post-Exercise Hypotension. A Pilot Study in Healthy Volunteers.
Post-exercise hypotension (PEH) is the phenomenon of lowered blood pressure after a single bout of exercise. Only a fraction of people develops PEH but its occurrence correlates well with long-term effects of sports on blood pressure. Therefore, PEH has been suggested as a suitable predictor for the effectivity of exercise as therapy in hypertension. Local vascular bioactive lipids might play a potential role in this context. We performed a cross-over clinical pilot study with 18 healthy volunteers to investigate the occurrence of PEH after a single short-term endurance exercise. Furthermore, we investigated the plasma lipid profile with focus on arachidonic acid (AA)-derived metabolites as potential biomarkers of PEH. A single bout of ergometer cycling induced a significant PEH in healthy volunteers with the expected high inter-individual variability. Targeted lipid spectrum analysis revealed significant upregulation of several lipids in the direct post-exercise phase. Among these changes, only 15- hydroxyeicosatetranoic acid (HETE) correlated significantly with the extent of PEH but in an AA-independent manner, suggesting that 15-HETE might act as specific PEH-marker. Our data indicate that specific lipid modulation might facilitate the identification of patients who will benefit from exercise activity in hypertension therapy. However, larger trials including hypertonic patients are necessary to verify the clinical value of this hypothesis. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Arachidonic Acid; Biological Variation, Population; Blood Pressure; Cross-Over Studies; Dinoprostone; Exercise; Female; Healthy Volunteers; Heart Rate; Humans; Hydroxyeicosatetraenoic Acids; Hypertension; Lipid Metabolism; Male; Pilot Projects; Post-Exercise Hypotension; Thromboxanes | 2020 |
Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE.
In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development. Topics: Animals; Cattle; Cell Hypoxia; Cells, Cultured; Endothelial Cells; Gap Junctions; Hydroxyeicosatetraenoic Acids; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Myosin Heavy Chains; Pulmonary Artery; Vasoconstriction | 2016 |
Lipoxygenase-derived hydroxyeicosatetraenoic acids--novel perioperative markers of early post-transplant allograft function?
Active metabolites of arachidonic acid (AA), eicosanoids, strongly influence renal homeostasis. The aims of this study were to measure perioperative variations in lipoxygenase (LOX)-derived 5-, 12- and 15-hydroxyeicosatetraenoic (HETE) acids levels, and to examine whether (i) dynamics of these eicosanoid generation changes during the first 5 min of renal allograft reperfusion, (ii) examined HETE acids may influence perioperative 20-HETE generation, and (iii) LOX HETE may serve as perioperative markers of early post-transplant allograft function.. Sixty-nine kidney recipients were divided into early, slow and delayed graft function (EGF, SGF and DGF, respectively) groups. Blood was taken directly before, and in the consecutive minutes of graft reperfusion. HETE concentrations were measured using liquid chromatography. Creatinine levels were measured during the perioperative period, as well as during follow-up visits (first post-transplant year).. Our results demonstrated significant differences in the concentrations and dynamics of HETE changes between the examined groups. Moreover, observed changes in HETE concentrations were strongly associated with post-transplant graft function and perioperative 20-HETE synthesis. Application of cut-off limits for newly introduced markers, that is 71.72 ng/mL for 5-HETE(5), 12.3 ng/mL for 12-HETE△(5-0) and -6.1 ng/mL for 15-HETE△(5-0), resulted in 72.5-81.5% sensitivity and 50-54% specificity for SGF/DGF prediction. Moreover, mixed model analysis revealed that recipients classified according to results of 5-HETE(5) and 15-HETE△(5-0) significantly differ in 1-year post-transplant allograft function (P = 0.03 and P < 0.05, respectively), however, not in the frequency of acute rejections' episodes (P = 0.91 and P = 0.31, respectively).. We hereby report that human kidney transplantations are accompanied by significant changes in LOX AA metabolism, which strongly influences and predicts early (1 year) post-transplant graft function. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Arachidonic Acid; Biomarkers; Female; Graft Survival; Humans; Hydroxyeicosatetraenoic Acids; Kidney Transplantation; Lipoxygenase; Male; Middle Aged; Perioperative Period; Retrospective Studies; Time Factors; Transplantation, Homologous | 2010 |
Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine.
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Aorta; Benzylamines; Cells, Cultured; Cytosol; Enzyme Activation; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Imidazoles; Male; Muscle, Smooth, Vascular; Norepinephrine; Phospholipase D; Phospholipases A; Phospholipases A2; Rabbits; Recombinant Proteins; Sulfonamides; Transfection | 2001 |