15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with ozagrel* in 16 studies
16 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and ozagrel
Article | Year |
---|---|
Thromboxane A(2) promotes soluble CD40 ligand release from human platelets.
The plasma level of soluble CD40 ligand (sCD40L), which induces pro-inflammatory and pro-atherogenic responses, is known to be elevated in atherosclerotic patients. In this study, we investigated the mechanism of sCD40L release from human platelets, focusing on the involvement of thromboxane (TX) A(2).. We measured sCD40L release and TXA(2) production induced by ristocetin, an activator of GPIb/IX/V, from human platelets in vitro. Moreover, plasma sCD40L and TXA(2) levels in the 10 patients with severe carotid artery stenosis who were not taking any anti-platelet medicines were measured and compared with those obtained from non-atherosclerotic controls.. Ristocetin significantly promoted sCD40L release and TXA(2) generation from platelets in vitro. Aspirin and SC-560, a cyclooxygenase-1 inhibitor, suppressed the ristocetin-induced sCD40L release from platelets in parallel with TXA(2) production. Ozagrel, a TXA(2) synthase inhibitor and PTXA(2), a thromboxane receptor (TP) antagonist also suppressed sCD40L release. U46619, a TP agonist, reversed the suppressive effect of aspirin on sCD40L release. In vivo, plasma levels of sCD40L and TXA(2) in the patients were significantly higher than those in controls. Elevated plasma levels of TXA(2) and sCD40L in the patients were markedly diminished after 7 days of 100mg aspirin administration.. These results strongly suggest that GPIb/IX/V activation induces sCD40L release via TXA(2) from human platelets, and that sCD40L release via TXA(2) generation from platelets in atherosclerotic patients are up-regulated. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aged; Aspirin; Atherosclerosis; Blood Platelets; Carotid Artery Diseases; CD40 Ligand; Female; Humans; Male; MAP Kinase Kinase 4; Methacrylates; Middle Aged; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyrazoles; Ristocetin; Thromboxane A2 | 2010 |
Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets.
Arachidonic acid (AA) is a potent inducer of platelet aggregation in vitro; this activity is due to its conversion to biologically active metabolites, prostaglandin (PG) endoperoxides and thromboxane A2 (TxA2). PG endoperoxides and TxA, are thought to act on the same receptor; however, at least two isoforms of this receptor have been identified. The aim of our work was to clarify whether endoperoxides and TxA2 activate the same or different receptor subtypes to induce aggregation and calcium movements in human platelets. AA-induced aggregation and calcium rises were still detectable in platelets preincubated with thromboxane synthase inhibitors, which suppress TxA2 formation and induce PGH2 accumulation, suggesting that PG endoperoxides can activate platelets. Exogenously added PGH2 was able to induce aggregation and calcium rises. Pretreatment of platelets with GR32191B or platelet activating factor, which desensitize one of the two receptor subtypes identified in platelets, did not prevent calcium rises induced by endogenously generated or by exogenouly added PGH2, indicating that TxA2 and PG endoperoxides share the same receptor subtype(s) to activate platelets. HEK-293 cells overexpressing either of the two thromboxane receptor isoforms cloned to date (TPalpha and TPbeta) and identified in human platelets, stimulated with PGH2, or with the stable endoperoxide analog U46619, formed inositol phosphates. These data show that endoperoxides and TXA2 mediate their effects on platelets acting on both, and the same, receptor isoform(s). Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aspirin; Biphenyl Compounds; Blood Platelets; Bridged Bicyclo Compounds, Heterocyclic; Calcium Signaling; Cells, Cultured; Enzyme Inhibitors; Fatty Acids, Unsaturated; Heptanoic Acids; Humans; Hydrazines; Imidazoles; Inositol Phosphates; Kidney; Methacrylates; Phenylacetates; Platelet Activating Factor; Platelet Activation; Prostaglandin H2; Prostaglandins H; Protein Isoforms; Receptors, Thromboxane; Recombinant Fusion Proteins; Sulfonamides; Thromboxane A2; Thromboxane B2; Thromboxane-A Synthase | 2002 |
L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats.
To clarify whether endothelium-derived contracting factor (EDCF) is developed in renal artery of hypertensive Dahl rats and whether prolonged oral L-arginine treatments prevent development of EDCF and hypertension.. The effect of prolonged salt treatment with or without L-arginine on the renal artery was examined.. Dahl salt-sensitive and -resistant rats were fed a 0.4 or an 8% NaCl diet for 4 weeks. High sodium intake increased arterial pressure in Dahl salt-sensitive rats. The rings of renal arteries were suspended for isometric tension recording. Only in the hypertensive rats, more than 1 micromol/l acetylcholine induced an endothelium-dependent contraction response. The contraction was completely inhibited by indomethacin or ONO-3708 [prostaglandin H2 (PGH2)/thromboxane A2 (TXA2) receptor antagonist], and partially inhibited by OKY-046 (TXA2 synthetase inhibitor). Acetylcholine-induced relaxation was significantly depressed in hypertensive rats, which was partially improved by SQ29548 (PGH2/TXA2 receptor antagonist). Oral L-arginine, but not ONO-8809 (orally active PGH2/TXA2 receptor antagonist) treatment, inhibited the contraction and amended the relaxation. The endothelium-independent contraction to TXA2 receptor agonist U46619 and relaxation to nitroprusside were not altered by L-arginine treatment The L-Arginine treatment reduced blood pressure and sodium retention with increases in urinary NO2-/NO3- and cGMP excretion. Hydralazine treatment also inhibited development of EDCF.. The present results suggest that impaired endothelium-dependent relaxation to acetylcholine is caused in part by induction of EDCF synthesis/release in renal arteries of hypertensive Dahl rats. L-arginine can attenuate sodium retention and development of hypertension, which lead to a decrease in EDCF synthesis in renal arteries. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Animals; Arginine; Blood Pressure; Bridged Bicyclo Compounds, Heterocyclic; Cyclic GMP; Endothelins; Endothelium, Vascular; Fatty Acids, Unsaturated; Hydralazine; Hydrazines; Hypertension; In Vitro Techniques; Indomethacin; Male; Methacrylates; Natriuresis; Nitrates; Nitrites; Nitroprusside; Rats; Rats, Inbred Dahl; Renal Artery; Thromboxane A2; Vasoconstriction | 2001 |
Activation of TxA2/PGH2 receptors and protein kinase C contribute to coronary dysfunction in superoxide treated rat hearts.
We have previously shown that superoxide anion (O2-) stimulates the release of vasoconstrictor prostanoids and induces a prolonged rise in coronary perfusion pressure (CPP) that persists even after removal of O2-. In this study, we tested the hypothesis that the increased CPP is mediated by activation of TxA2/ PGH2 (TP) receptors and protein kinase C (PKC)-dependent mechanisms. In Langendorff perfused rat hearts, O2- was applied for 15 min and then washed out over a period of 20 min. Application of O2- increased the release of vasoconstrictive (TxA2 and PGF2alpha) and decreased vasodilating (PGI2 and PGE2) prostanoids. Although indomethacin (10 microM), a cyclooxygenase inhibitor, attenuated the rise in CPP during O2- perfusion, the increase was not completely blocked. OKY 046Na (10 microM), a thromboxane synthase inhibitor, had no effect on O2--induced increases in CPP, whereas ONO 3708 (10 microM), a TP receptor antagonist, suppressed this effect. PKC activity was also elevated by more than 50% by O2- perfusion. CPP typically increased throughout the O2- wash-out. This post-O2- vasoconstriction was not inhibited by indomethacin, nitroglycerin or nitrendipine. In contrast, ONO 3708 (10 microM) and two PKC inhibitors, staurosporine (10 nM) and calphostin C (100 nM), completely blocked the rise in CPP, and even elicited vasodilation. PDBu enhanced the post-O2- vasoconstriction. We conclude that O2--induced coronary vasoconstriction is initially mediated by TP receptors, but activation of PKC sustains the response. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Calcium Channel Blockers; Cardiovascular Agents; Coronary Disease; Dinoprost; Enzyme Inhibitors; In Vitro Techniques; Indomethacin; Male; Methacrylates; Naphthalenes; Perfusion; Prostaglandins; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, Prostaglandin; Receptors, Thromboxane; Receptors, Thromboxane A2, Prostaglandin H2; Staurosporine; Superoxides; Thromboxane A2; Thromboxane-A Synthase; Vasoconstrictor Agents | 2000 |
Participation of thromboxane A(2) in the cough response in guinea-pigs: antitussive effect of ozagrel.
1. The purpose of this study was to investigate the involvement of thromboxane A(2) (TXA(2)) in the cough response in a guinea-pig cough model. Here, we describe results obtained using a selective TXA(2) synthetase inhibitor, ozagrel, and a selective TXA(2) agonist, U-46619. 2. Guinea-pigs were anaesthetized and exposed to an aerosol of capsaicin (100 microM) to elicit coughing. The number of coughs was 20.0+/-5.8 during capsaicin provocation (5 min), but only 2. 8+/-0.4 during a 5-min inhalation of phosphate-buffered saline (PBS) (P:<0.05). 3. TXB(2) levels in BAL were 101.4+/-8.0 and 58.4+/-8.7 pg ml(-1) following capsaicin and PBS inhalation, respectively (P:<0. 01), but there was no intergroup difference in the cell populations in BAL. 4. Inhalation of U-46619 did not induce a cough response by itself at concentrations of 100 ng ml(-1) to 10 microg ml(-1). However, it caused a 2 fold increase in the number of capsaicin-induced coughs. 5. To explore the source of the TXA(2), BAL cells were stimulated with capsaicin and the supernatants collected for analysis. The TXB(2) concentration in BAL was increased dose-dependently, indicating that TXA(2) is released from BAL cells in response to capsaicin. 6. Ozagrel was administered orally 1 h before a 5 min capsaicin provocation and the number of coughs was counted during the capsaicin inhalation. Ozagrel decreased the number of coughs dose-dependently (ED(50) value, 26.3 mg kg(-1)). 7. These results show that TXA(2) modulates the capsaicin-induced cough response by increasing capsaicin-sensitivity. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Antitussive Agents; Capsaicin; Cough; Disease Models, Animal; Dose-Response Relationship, Drug; Guinea Pigs; Male; Methacrylates; Thromboxane A2; Thromboxane-A Synthase | 2000 |
Role of thromboxane A2 in healing of gastric ulcers in rats.
We investigated the role of thromboxane (TX) A2 in gastric ulcer healing in rats. Acetic acid ulcers were produced in male Donryu rats. TXA2 synthesis in the stomachs with ulcers was significantly elevated in ulcerated tissue, but not in intact tissue, compared with that in the gastric mucosa of normal rats. Indomethacin inhibited both TXA2 and prostaglandin E2 (PGE2) synthesis in ulcerated tissue, while NS-398 (selective cyclooxygenase-2 inhibitor) reduced only PGE2 synthesis. OKY-046 (TXA2 synthase inhibitor) dose-relatedly inhibited only TXA2 synthesis. The maximal effect of OKY-046 (80% inhibition) was found at more than 30 mg/kg. When OKY-046 was administered for 14 days, the drug at more than 30 mg/kg significantly accelerated ulcer healing without affecting acid secretion. The maximal reduction of ulcerated area by OKY-046 was about 30%, compared with the area in the control. Histological studies revealed that regeneration of the mucosa was significantly promoted by OKY-046, but neither maturation of the ulcer base nor angiogenesis in the base were affected. OKY-046 and TXB2 had no effect on proliferation of cultured rat gastric epithelial cells, but U-46619 (TXA2 mimetic) dose-relatedly prevented the proliferation without reducing cell viability. These results indicate that the increased TXA2, probably derived from cyclooxygenase-1 in ulcerated tissue, exerts a weak inhibitory effect on ulcer healing in rats. The effect of TXA2 might be due partly to prevention of gastric epithelial cell proliferation at the ulcer margin. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Cell Division; Cell Line; Cell Survival; Enzyme Inhibitors; Epithelial Cells; Gastric Mucosa; Male; Methacrylates; Rats; Rats, Inbred Strains; Stomach; Stomach Ulcer; Thromboxane A2; Thromboxane-A Synthase; Transforming Growth Factor alpha; Vasoconstrictor Agents | 1999 |
Inhibitory actions of ONO-3708 on the stretch-induced contraction potentiated by hemolysate/oxyhemoglobin studied in dog cerebral artery.
Quick stretch at a rate of 10 cm/sec with the amount of 30% of the slack length ( = 100%) produced a contraction in dog cerebral artery. The stretch-induced contraction was potentiated by 2-3 times in the presence of hemolysate (0.2 mg oxyHb/ml) only when the endothelium was intact. The stretch-induced contraction was also augmented by vasoconstrictor prostaglandins (PGs) such as PGF2 alpha or a stable thromboxane A2 (TXA2) analogue, U46619 (9, 11-dideoxy-11 alpha, 9 alpha-epoxymethano prostaglandin F2 alpha). ONO-3708 (7-[2 alpha, 4 alpha-(dimethylmethano-6 beta-(2-cyclopentyl-2 beta-hydroxyacetamido)-1 alpha-cyclohexyl]-5(z) heptenoic acid), a specific receptor antagonist for thromboxane A2 (TXA2)/prostaglandin (PG) endoperoxide, inhibited the potentiated stretch-induced contraction in the presence of hemolysate by about 50%. The compound completely inhibited the increase of stretch-induced contraction by PGF2 alpha or U46619. A cyclooxygenase inhibitor, acetylsalicylate, or a TXA2 synthetase inhibitor, OKY-046 ((E)-3-[4-(1-imidazolyl methyl)phenyl]-2-propenate) did not affect the potentiated stretch-induced contraction. The amount of PGF2 alpha released from the cerebral artery was not increased by hemolysate. These findings suggest that the potentiation of the stretch-induced contraction by hemolysate/oxyhemoglobin is not attributable to cyclooxygenase metabolites such as vasoconstrictor PGs. ONO-3708 seems to inhibit the potentiated stretch-induced contraction by hemolysate/oxyhemoglobin via mechanisms other than antagonism for cyclooxygenase products. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aspirin; Cerebral Arteries; Cyclooxygenase Inhibitors; Dinoprost; Dogs; Endothelium, Vascular; Enzyme Inhibitors; Female; Male; Methacrylates; Muscle Contraction; Muscle, Smooth, Vascular; Oxyhemoglobins; Oxytocics; Reflex, Stretch; Thromboxane A2; Thromboxane-A Synthase; Vasoconstrictor Agents | 1997 |
Activation of endogenous thromboxane A2 biosynthesis mediates presynaptic inhibition by endothelin-3 of dog stellate ganglionic transmission.
Effects of endothelin-3 on ganglionic transmission were investigated in dog cardiac sympathetic ganglia. Positive chronotropic responses to preganglionic stellate stimulation were inhibited by endothelin-3 (0.5-2 micrograms) given directly to the ganglia through the artery. To find possible inhibitory effects of the peptide at presynaptic sites, acetylcholine released from the isolated stellate ganglia was determined. The amount of acetylcholine released during preganglionic stimulation was reduced by exposure to endothelin-3 (10(-9) to 10(-6) M). A similar reduction of acetylcholine release was observed after application of a stable thromboxane A2, a thromboxane A2/prostaglandin H2 receptor agonist, U-46619, and prostaglandin E2 at concentrations from 10(-8) to 10(-4) M, but not by the same concentrations of prostaglandins F2 alpha and I2. The reduction elicited by endothelin-3 was unaffected by a phospholipase C inhibitor, neomycin, or a protein kinase C inhibitor, H-7, but was antagonized by pretreatment with phospholipase A2 inhibitors, dexamethasone or methylprednisolone, and by cyclooxygenase inhibitors, aspirin and indomethacin. In addition, the reduction also was antagonized by pretreatment with a thromboxane A2 synthetase inhibitor, OKY-046, and a specific thromboxane A2 receptor antagonist, S-145, but not by a specific prostaglandin E2 receptor antagonist, SC-19220. Furthermore, endothelin-3 (10(-7) M) stimulated the OKY-046- and indomethacin-sensitive formation of thromboxane A2 in the ganglia. These results indicate that endothelin-3 inhibits the sympathetic ganglionic transmission by reducing acetylcholine release at preganglionic terminals and that this inhibition seems to involve activation of endogenous thromboxane A2 production. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Animals; Bridged Bicyclo Compounds; Dogs; Electric Stimulation; Endothelins; Fatty Acids, Monounsaturated; Female; Glucocorticoids; Male; Methacrylates; Phospholipases A; Phospholipases A2; Prostaglandin Endoperoxides, Synthetic; Receptors, Thromboxane; Stellate Ganglion; Synaptic Transmission; Thromboxane A2; Thromboxane B2 | 1995 |
Leukotriene D4- and prostaglandin F2 alpha-induced airflow obstruction and airway plasma exudation in guinea-pig: role of thromboxane and its receptor.
1. We studied the effects of a thromboxane A2 receptor (TP receptor) antagonist, ICI-192,605 (0.5 mg kg-1, i.v.) and a selective thromboxane (Tx) synthetase inhibitor, OKY-046 (30 mg kg-1, i.v.), on airway responses induced by leukotriene D4 (LTD4; 0.2 nmol) or prostaglandin F2 alpha (PGF2 alpha; 20 nmol) instilled via the airways route to anaesthetized guinea-pigs. For a comparison, airway responses to a TxA2-mimetic, U-46619 (0.02 nmol) were also studied. We measured both lung resistance (RL) to monitor airflow obstruction, and extravasation of Evans Blue dye to quantify airway plasma exudation. 2. Instilled LTD4 into the tracheal lumen induced an immediate peak and subsequently persistent increase in RL and produced a large amount of extravasation of Evans Blue dye at all airway levels. Both ICI-192,605 and OKY-046 significantly attenuated the persistent increase in RL following the immediate response and reduced LTD4-induced extravasation of Evans Blue dye in the trachea and proximal intrapulmonary airway. Instilled LTD4 produced significant increases in immunoreactive TxB2 in bronchoalveolar lavage fluid obtained 1.5 min after instillation of LTD4. 3. Instilled PGF2 alpha into the tracheal lumen induced an immediate increase in RL which peaked at approximately 15 s. We also observed a delayed sustained increase in RL, reaching a second peak at approximately 4 min. PGF2 alpha produced small but significant increases in the amount of Evans Blue dye at all airway levels. As with PGF2 alpha, instillation of U-46619 produced a biphasic increase in RL and extravasation of Evans Blue dye. The potency of PGF2a, in inducing these airway responses was about 1000 times less than U-46619. ICI-192,605 abolished both the immediate and the delayed increase in RL after PGF2a, and also blocked PGF2a,-induced extravasation of Evans Blue dye. However, OKY-046 had no inhibitory effects on these responses.4. We conclude that airflow obstruction and airway plasma exudation induced by instilled LTD4 is, in part, mediated via TxA2 generation and subsequent activation of TP-receptors. On the other hand,instilled PGF2a, while inducing similar responses, does so primarily by direct activation of TP receptors,rather than via TxA2 generation. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Airway Obstruction; Airway Resistance; Animals; Blood Pressure; Bronchoalveolar Lavage Fluid; Capillary Permeability; Dinoprost; Dioxanes; Evans Blue; Exudates and Transudates; Guinea Pigs; In Vitro Techniques; Leukotriene D4; Male; Methacrylates; Prostaglandin Endoperoxides, Synthetic; Receptors, Thromboxane; Thromboxane A2; Thromboxane-A Synthase; Vasoconstrictor Agents | 1993 |
An inhibitor of thromboxane production attenuates tumor necrosis factor release by activated human alveolar macrophages.
Tumor necrosis factor alpha (TNF alpha) and thromboxane A2 (TXA2) are major products of the activated alveolar macrophage and serve as key mediators of lung injury. In order to determine if the synthesis of TXA2 and the release of TNF alpha are associated, the production of these inflammatory agents by the human alveolar macrophage (AM), as a result of activation by lipopolysaccharide (LPS), was assessed in the absence and presence of the thromboxane synthase inhibitors UK 38,485 (Dazmegrel) and OKY 046. UK 38,485 and OKY 046 inhibited both LPS-stimulated TXA2 production and TNF alpha release in a dose-dependent manner. Prostaglandin E2 (PGE2) production was not increased by UK 38,485 or OKY 046. Neither LPS nor UK 38,485 had any effect on LTB4 production by AM. Neither UK 38,485 or OKY 046 had any effect on LPS-stimulated interleukin-1 beta release. However, the TXA2 mimetic, U46619, did not stimulate TNF alpha release by AM either in the absence or presence of UK 38,485. These findings suggest that 1) UK 38,485 and OKY 046 are inhibitors of both TXA2 production and TNF alpha release by activated human AM, 2) UK 38,485 probably does not exert its inhibitory action on TNF alpha release through effects on eicosanoid production and 3) the possibility that TNF alpha- and TXA2-induced lung injury may be subject to amelioration by imidazole-based compounds should be further evaluated. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adult; Cells, Cultured; Humans; Imidazoles; Kinetics; Lipopolysaccharides; Macrophage Activation; Macrophages, Alveolar; Male; Methacrylates; Middle Aged; Prostaglandin Endoperoxides, Synthetic; Thromboxane A2; Thromboxane-A Synthase; Tumor Necrosis Factor-alpha; Vasoconstrictor Agents | 1993 |
Effects of CS-518, a thromboxane synthase inhibitor, on the asthmatic response.
The anti-asthmatic effects of CS-518 (sodium 2-(1-imidazolylmethyl)-4,5-dihydrobenzo[b]thiophene-6-carboxylate) , a specific thromboxane A2 (TXA2) synthase inhibitor, were investigated in the ovalbumin-sensitized guinea pig asthmatic model. Although CS-518 slightly inhibited (about 25%) whole bronchoconstriction, it significantly inhibited the antigen-induced bronchoconstriction mediated by slow-reacting substance of anaphylaxis (SRS-A), which was not reduced by chlorpheniramine, a histamine H1 antagonist. On the other hand, indomethacin, a cyclooxygenase inhibitor, potentiated the SRS-A-mediated constriction. CS-518 strongly, and indomethacin slightly, suppressed the leukotriene D4-induced bronchoconstriction. CS-518 clearly inhibited the antigen-induced airway hyperresponsiveness, but this compound had no effect on the airway hyperresponsiveness induced by U-46619, a TXA2-mimetic agent, and propranolol. These results suggest that CS-518 suppresses the development of bronchoconstriction and airway hyperresponsiveness in asthmatic models by inhibition of TXA2 synthesis with the concomitant increase in bronchodilating prostaglandins such as prostaglandin E2 and prostaglandin I2. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Asthma; Bronchial Hyperreactivity; Bronchoconstriction; Chlorpheniramine; Disease Models, Animal; Guinea Pigs; Indomethacin; Male; Methacrylates; Ovalbumin; Propranolol; Prostaglandin Endoperoxides, Synthetic; SRS-A; Thiophenes; Thromboxane A2; Thromboxane-A Synthase; Vasoconstrictor Agents | 1993 |
Antiasthmatic activity of a novel thromboxane A2 antagonist, S-1452, in guinea pigs.
We examined the effect of a potent thromboxane (Tx) A2 receptor antagonist, calcium (1R, 2S, 3S, 4S)-(5Z)-7-(((phenylsulfonyl)amino)bicyclo[2.2.1] hept-2-yl)-5-heptenoate dihydrate (S-1452), on antigen- and various allergic-spasmogen-induced contractions of guinea pig lung parenchymal strips and on the increase in insufflation pressure, an index of bronchoconstriction, in anesthetized guinea pigs. In isolated guinea pig lung parenchymal strips, S-1452 showed competitive antagonism of the contractile activity of U-46619, a TxA2 mimetic, with a pA2 value of 8.9. The compound also inhibited the contraction induced by prostaglandin (PG) D2 and PGF2 alpha, but a TxA2 synthetase inhibitor, OKY-046, did not. In contrast, both drugs inhibited not only leukotriene (LT) D4-induced contraction but also antigen-induced contraction in the presence of a histamine antagonist. In anesthetized guinea pigs, oral administration of S-1452 markedly inhibited the bronchoconstrictions induced by intravenous injection of U-46619, PGD2, PGF2 alpha, LTD4 and platelet-activating factor (PAF) with ED50 values of 0.006, 0.031, 0.112, 0.033 and 0.115 mg/kg, respectively, but OKY-046 inhibited only that by LTD4 and PAF. Additionally, bronchoconstriction following intravenous injection of antigen was almost completely suppressed by S-1452 (0.1 mg/kg) and partially by OKY-046 (300 mg/kg) in passively sensitized guinea pigs which were treated with diphenydramine and propranolol. The inhibitory effect of S-1452 against U-46619-induced broncho-constriction persisted up to 7 h after oral administration.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Asthma; Bridged Bicyclo Compounds; Bronchoconstriction; Fatty Acids, Monounsaturated; Guinea Pigs; In Vitro Techniques; Lung; Male; Methacrylates; Muscle Contraction; Prostaglandin Endoperoxides, Synthetic; Receptors, Thromboxane; Thromboxane A2 | 1992 |
The role of thromboxane A2 (TxA2) in allergic cutaneous reactions and the effect of (E)-3-[p-(1H-imidazol-1-ylmethyl) phenyl]-2-propenoic acid hydrochloride (OKY-046), a TxA2 synthetase inhibitor.
To study the role of thromboxane A2 (TxA2) in cutaneous allergic reactions, the effect of (E)-3-[p-(1H-Imidazol-1-ylmethyl)phenyl]-2-propenoic acid hydrochloride (OKY-046), a selective TxA2 synthetase inhibitor, on cutaneous reactions in rats and mice was studied. Simultaneously, the effect of 9,11-methanoepoxy-prostaglandin H2 (U-46619), a stable analogue of TxA2, on capillary permeability in mouse and rat skin was investigated. Passive cutaneous anaphylaxis (PCA) in mouse ear was clearly inhibited by OKY-046 but not by indomethacin. The inhibitory action of OKY-046 was not influenced by pretreatment with indomethacin. Moreover, prostaglandin I2, which accumulated as a result of the inhibition of TxA2 synthetase, did not affect the PCA. But, the dye leakages caused by histamine, serotonin and leukotriene C4 in mouse ear were clearly inhibited by OKY-046. In addition, OKY-046 inhibited rat reversed cutaneous anaphylaxis, but its inhibitory action was not affected by pretreatment with indomethacin. Contrary to the above results, rat footpad passive Arthus reaction and mouse footpad tuberculin delayed hypersensitivity reaction were not affected by OKY-046. Additionally, U-46619 did not cause an increase of capillary permeability in either mouse and rat skin. These results suggest a slight role of TxA2 in cutaneous allergic reactions in mice and rats and the efficacy of OKY-046 on Type I and II reactions regardless of the inhibition of TxA2 synthetase activity. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acrylates; Animals; Dermatitis, Contact; Female; Histamine; Hypersensitivity, Delayed; Male; Methacrylates; Mice; Mice, Inbred BALB C; Prostaglandin Endoperoxides, Synthetic; Rabbits; Rats; Rats, Inbred Strains; Serotonin; SRS-A; Thromboxane A2; Thromboxane-A Synthase | 1989 |
Mechanisms of hypotension produced by platelet-activating factor.
Platelet-activating factor (PAF) is a phospholipid mediator that induces cardiovascular collapse and release of the secondary mediator thromboxane A2 (TxA2). To clarify mechanisms involved in this collapse and, specifically, the relative contribution of left ventricular and right ventricular dysfunction, we studied 12 open-chest pigs. PAF infusion (0.04-0.28 nmol.kg-1.min-1) induced a 5- to 120-fold increase in pulmonary vascular resistance, a 75-98% fall in cardiac output, and systemic arterial hypotension. Right ventricular failure was indicated by chamber enlargement, decreased shortening, and increased right atrial pressures. In contrast, left ventricular dysfunction was accompanied by decreases in chamber dimensions and filling pressures that were unresponsive to volume expansion. U 46619 (a stable TxA2 analogue) and mechanical pulmonary artery constriction induced changes similar to PAF. In 11 additional closed-chest pigs, TxA2 blockade with indomethacin attenuated the PAF-induced rise in pulmonary vascular resistance, right ventricular dysfunction, and systemic hypotension. A specific TxA2 synthase inhibitor, OKY-046, also diminished hemodynamic effects of PAF in six other pigs. Tachyphylaxis was not observed in five pigs repeatedly given PAF. We conclude that acute right ventricular failure as the result of severe increase in pulmonary vascular resistance is the primary mechanism early in the course of PAF-induced shock in the pig. PAF-induced release of TxA2 may contribute significantly to these events. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Female; Hypotension; Indomethacin; Male; Methacrylates; Platelet Activating Factor; Prostaglandin Endoperoxides, Synthetic; Swine; Thromboxane A2; Thromboxane-A Synthase | 1989 |
The role of thromboxane A2 [TxA2] in liver injury in mice.
The role of thromboxane A2 (TxA2) in CCl4-induced liver disease was investigated in mice. Significant elevation of TxB2 in the liver was observed 6 hours after the injection of CCl4. Administration of OKY-046, a selective TxA2 synthetase inhibitor (10 and 50 mg/kg) and ONO-3708, a TxA2 receptor antagonist, (0.5, 1 and 2 mg/Kg) suppressed the elevation of serum GOT and GPT levels and histopathological changes of the liver. In addition, OKY-046 inhibited the elevation of TxB2 in the liver. When U-46619, a stable TxA2 mimetic was injected i.v. into the mice, clear elevation of serum GOT and GPT levels and histopathological score of the liver were observed. These results suggest that TxA2 play a role for the onset of CCl4-induced liver injury in mice. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alanine Transaminase; Animals; Aspartate Aminotransferases; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Liver; Male; Methacrylates; Mice; Mice, Inbred Strains; Prostaglandin Endoperoxides, Synthetic; Thromboxane A2; Thromboxane B2; Thromboxane-A Synthase | 1989 |
Significance of thromboxane generation in ozone-induced airway hyperresponsiveness in dogs.
To determine whether thromboxane A2 may be involved in ozone (O3)-induced airway hyperresponsiveness, we studied the effect of a thromboxane synthase inhibitor (OKY-046, 100 micrograms X kg-1 X min-1 iv) in five dogs exposed to O3. Airway responsiveness was assessed by determining the provocative concentration of acetylcholine aerosol that increased total pulmonary resistance by 5 cmH2O X l-1 X s. O3 (3 ppm) increased airway responsiveness as demonstrated by a decrease in acetylcholine provocative concentration from 2.42 (geometric SEM = 1.64) to 0.14 mg/ml (geometric SEM = 1.30). OKY-046 significantly inhibited this effect without altering pre-O3 responsiveness or the O3-induced increase in neutrophils and airway epithelial cells in bronchoalveolar lavage fluid. To further examine the role of thromboxane A2, we studied the effect of a thromboxane A2 mimetic, U-46619, on airway responsiveness in five additional dogs. U-46619 in subthreshold doses (i.e., insufficient to increase base-line pulmonary resistance) caused a fourfold increase in airway responsiveness to acetylcholine. Subthreshold doses of histamine had no effect. These results suggest that thromboxane A2 may be an important mediator of O3-induced airway hyperresponsiveness. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Airway Resistance; Animals; Calcimycin; Dogs; Methacrylates; Neutrophils; Ozone; Prostaglandin Endoperoxides, Synthetic; Prostaglandin-Endoperoxide Synthases; Respiratory System; Thromboxanes | 1985 |