15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and fasudil

15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with fasudil* in 6 studies

Other Studies

6 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and fasudil

ArticleYear
Antispastic Effect of Fasudil and Cocktail of Fasudil and Nitroglycerin in Internal Thoracic Artery.
    The Annals of thoracic surgery, 2023, Volume: 115, Issue:5

    Spasm of arterial grafts in coronary artery bypass grafting is a clinical problem and can occasionally be lethal. Perioperative spasm in the internal thoracic artery (ITA) and coronary arteries occurs in 0.43% of patients. This study aimed to investigate the antispastic effect of a RhoA/Rho-kinase (Rho-associated coiled-coil-containing protein kinase [ROCK]) inhibitor (fasudil) with and without nitroglycerin in combination in the ITA.. Isolated human ITA rings taken from 68 patients who were undergoing coronary bypass were studied in a myograph. Cumulative concentration-relaxation curves for fasudil (-9 to -3.5 log M) were established in the ITA, which was precontracted with potassium chloride or U46619. The inhibitory effect of fasudil (-6.3 or -5.3 log M) or fasudil in combination with nitroglycerin were also tested. The ROCK2 protein was measured by Western blot.. Fasudil caused similar relaxation in ITA rings contracted by potassium chloride or U46619. Pretreatment with -5.3 log M fasudil significantly depressed contraction induced by potassium chloride (P = .004 vs control; P = .017 vs -6.3 log M) and U46619 (P = .010 vs control; P = .041 vs. -6.3 log M). Fasudil in combination with nitroglycerin had more effect and more rapid and sustained relaxation than either vasodilator alone. Fasudil caused a decrease of ROCK2 protein content (P = .014).. Fasudil fully relaxes some vasoconstrictor-induced contraction and decreases ROCK2 protein content in the ITA. The combination of fasudil and nitroglycerin has a superior effect than either vasodilator alone. The new cocktail solution composed of fasudil and nitroglycerin (pH 7.4) has effective antispastic action and may prove to be a new antispastic method for arterial conduits during coronary bypass surgery.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Humans; Mammary Arteries; Nitroglycerin; Potassium Chloride; Vasodilator Agents

2023
Vascular mechanisms of post-COVID-19 conditions: Rho-kinase is a novel target for therapy.
    European heart journal. Cardiovascular pharmacotherapy, 2023, 06-02, Volume: 9, Issue:4

    In post-coronavirus disease-19 (post-COVID-19) conditions (long COVID), systemic vascular dysfunction is implicated, but the mechanisms are uncertain, and the treatment is imprecise.. Patients convalescing after hospitalization for COVID-19 and risk factor matched controls underwent multisystem phenotyping using blood biomarkers, cardiorenal and pulmonary imaging, and gluteal subcutaneous biopsy (NCT04403607). Small resistance arteries were isolated and examined using wire myography, histopathology, immunohistochemistry, and spatial transcriptomics. Endothelium-independent (sodium nitroprusside) and -dependent (acetylcholine) vasorelaxation and vasoconstriction to the thromboxane A2 receptor agonist, U46619, and endothelin-1 (ET-1) in the presence or absence of a RhoA/Rho-kinase inhibitor (fasudil), were investigated. Thirty-seven patients, including 27 (mean age 57 years, 48% women, 41% cardiovascular disease) 3 months post-COVID-19 and 10 controls (mean age 57 years, 20% women, 30% cardiovascular disease), were included. Compared with control responses, U46619-induced constriction was increased (P = 0.002) and endothelium-independent vasorelaxation was reduced in arteries from COVID-19 patients (P < 0.001). This difference was abolished by fasudil. Histopathology revealed greater collagen abundance in COVID-19 arteries {Masson's trichrome (MT) 69.7% [95% confidence interval (CI): 67.8-71.7]; picrosirius red 68.6% [95% CI: 64.4-72.8]} vs. controls [MT 64.9% (95% CI: 59.4-70.3) (P = 0.028); picrosirius red 60.1% (95% CI: 55.4-64.8), (P = 0.029)]. Greater phosphorylated myosin light chain antibody-positive staining in vascular smooth muscle cells was observed in COVID-19 arteries (40.1%; 95% CI: 30.9-49.3) vs. controls (10.0%; 95% CI: 4.4-15.6) (P < 0.001). In proof-of-concept studies, gene pathways associated with extracellular matrix alteration, proteoglycan synthesis, and viral mRNA replication appeared to be upregulated.. Patients with post-COVID-19 conditions have enhanced vascular fibrosis and myosin light change phosphorylation. Rho-kinase activation represents a novel therapeutic target for clinical trials.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Cardiovascular Diseases; COVID-19; Female; Humans; Male; Middle Aged; Post-Acute COVID-19 Syndrome; rho-Associated Kinases

2023
Effects of fasudil on blood-brain barrier integrity.
    Fluids and barriers of the CNS, 2022, Jun-03, Volume: 19, Issue:1

    Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen-glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model.. BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6 h OGD/24 h reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells.. We found that treatment with 0.3-30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes.. Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Astrocytes; Blood-Brain Barrier; Endothelial Cells; Glucose; Humans; Ischemic Stroke; Rats; Tight Junction Proteins

2022
Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat.
    American journal of physiology. Lung cellular and molecular physiology, 2008, Volume: 295, Issue:5

    The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Anesthesia; Angiotensin II; Animals; Blood Gas Analysis; Blood Pressure; Cardiac Output; Heart Rate; Hypoxia; Injections, Intravenous; Isradipine; Lung; Male; NG-Nitroarginine Methyl Ester; Protein Kinase Inhibitors; Pulmonary Circulation; Rats; Rats, Sprague-Dawley; rho-Associated Kinases; Vascular Resistance; Vasodilator Agents

2008
Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats.
    American journal of physiology. Lung cellular and molecular physiology, 2006, Volume: 290, Issue:2

    Endothelin-1 (ET-1), a potent vasoconstrictor, is believed to contribute to the pathogenesis of hypoxic pulmonary hypertension. Previously we demonstrated that contraction induced by ET-1 in intrapulmonary arteries (IPA) from chronically hypoxic (CH) rats occurred independently of changes in intracellular Ca2+ concentration ([Ca2+]i), suggesting that ET-1 increased Ca2+ sensitivity. The mechanisms underlying this effect are unclear but could involve the activation of myosin light chain kinase, Rho kinase, PKC, or tyrosine kinases (TKs), including those from the Src family. In this study, we examined the effect of pharmacological inhibitors of these kinases on maximum tension generated by IPA from CH rats (10% O2 for 21 days) in response to ET-1. Experiments were conducted in the presence of nifedipine, an L-type Ca2+ channel blocker, to isolate the component of contraction that occurred without a change in [Ca2+]i. The mean change in tension caused by ET-1 (10(-8) M) expressed as a percent of the maximum response to KCl was 184.0+/-39.0%. This response was markedly inhibited by the Rho kinase inhibitors Y-27632 and HA-1077 and the TK inhibitors genistein, tyrphostin A23, and PP2. In contrast, staurosporine and GF-109203X, inhibitors of PKC, had no significant inhibitory effect on the tension generated in response to ET-1. We conclude that the component of ET-1-induced contraction that occurs without a change in [Ca2+]i in IPA from CH rats requires activation of Rho kinase and TKs, but not PKC.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Amides; Animals; Azepines; Endothelin-1; Enzyme Inhibitors; Genistein; Hypoxia; Indoles; Intracellular Signaling Peptides and Proteins; Isometric Contraction; Male; Maleimides; Myosin-Light-Chain Kinase; Potassium Chloride; Protein Kinase C; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Pulmonary Artery; Pyridines; Pyrimidines; Rats; Rats, Wistar; rho-Associated Kinases; src-Family Kinases; Staurosporine; Vasoconstriction

2006
Variations in cell signaling pathways for different vasoconstrictor agonists in renal circulation of the rat.
    Kidney international, 2003, Volume: 63, Issue:6

    Major cell signaling pathways involved in agonist-induced vasoconstriction are recognized to be Ca2+ mobilization via inositol-1,4,5 triphosphate (IP3), Ca2+ influx through l-type channels, activation of protein kinase C (PKC), and of Rho-associated kinase (ROK). However, their contribution for renal vasoconstriction induced by different agonists is not well characterized.. Increasing doses of angiotensin II (Ang II), norepinephrine, and arginine vasopressin (AVP) were infused into the left renal artery of anesthetized rats to reduce renal blood flow from a threshold value to about 50%. Rightward shift of the dose-response curves due to coinfusion of inhibitors served to assess contribution of different pathways: trimethoxybenzoate (TMB-8) against Ca2+ mobilization, nifedipine against Ca2+ influx, staurosporine and Ro-318220 against PKC, and Y-27632 and HA-1077 against ROK. Effects of inhibitors were also determined for renal response to a single dose of U-46619, a thromboxane A2 agonist. Composite response to U-46619 consisting of a fast and slow component did not permit determination of dose-response curves.. Inhibition of ROK by Y-27632 or HA-1077 had the largest effect on renal responses to agonists. They shifted dose-response curves of Ang II, norepinephrine, and AVP to sevenfold and higher values. Staurosporine, nifedipine, and TMB-8 had variable effect on agonist responses. They attenuated effects of Ang II and norepinephrine in an additive manner, and each of them increased effective dose values about fourfold. TMB-8 did not attenuate response to AVP and U-46619. Staurosporine and nifedipine diminished effects of AVP in a nonadditive manner, and attenuated additively the fast component of U-46619 response.. In contrast to other cell signaling pathways, ROK plays a common role for all vasoconstrictor agonistsis in renal circulation.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Amides; Angiotensin II; Animals; Arginine Vasopressin; Blood Pressure; Calcium Channel Blockers; Enzyme Inhibitors; Female; Gallic Acid; Indoles; Nifedipine; Norepinephrine; Pyridines; Rats; Rats, Wistar; Renal Circulation; Signal Transduction; Staurosporine; Vasoconstrictor Agents

2003