15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and chelerythrine

15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with chelerythrine* in 4 studies

Other Studies

4 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and chelerythrine

ArticleYear
Role of Rho-kinase in mediating contraction of chicken embryo femoral arteries.
    Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2010, Volume: 180, Issue:3

    Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 microM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Benzophenanthridines; Body Weight; Calcium; Chick Embryo; Egtazic Acid; Endothelin-1; Enzyme Inhibitors; Femoral Artery; Hypoxia; NG-Nitroarginine Methyl Ester; Oxadiazoles; Phenylephrine; Phorbol 12,13-Dibutyrate; Potassium Chloride; Protein Kinase C; Protein Kinase Inhibitors; Quinoxalines; rho-Associated Kinases; Vasoconstriction

2010
Comparison of the involvement of protein kinase C in agonist-induced contractions in mouse aorta and corpus cavernosum.
    European journal of pharmacology, 2008, Aug-20, Volume: 590, Issue:1-3

    Protein kinase C (PKC) is involved in the regulation of vascular smooth muscle contraction. However, the role of PKC in erectile function is poorly understood. This study investigated whether PKC mediates agonist-induced contractions in mouse penile tissue (corpora cavernosa). We also compared the effects of PKC activators and inhibitors on contractile responses in mouse corpus cavernosum with those in mouse aorta. Aortic rings and corpus cavernosal strips from C57BL/6J mice were mounted in the organ bath for isometric tension recording. Our data showed that a PKC(alpha/beta) selective inhibitor, G(ö)6976 (10 microM), inhibited phenylephrine and 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F(2alpha) (U46619, a thromboxane mimetic)-induced contractions in mouse aorta, reducing the maximum contraction by 94% and 17%, respectively. A non-selective PKC inhibitor, chelerythrine (30 microM), also significantly reduced phenylephrine- and U46619-induced maximum contractions in mouse aorta. However, G(ö)6976 and chelerythrine had no significant effects on phenylephrine- and U46619-induced contractions in corpus cavernosum. Furthermore, a PKC activator, phorbol-12,13-dibutyrate (0.1 microM), significantly increased contractions in aorta (208+/-14% of KCl-induced maximum contraction) but failed to cause contractions in corpus cavernosum at 1 and 10 microM. Western blot analysis data suggested that protein expression of PKC was similar in aorta and corpus cavernosum. Taken together, our data indicate that PKC does not have a significant role in agonist-induced contractions in mouse corpus cavernosum, whereas it mediates the contractile response to agonists in the aorta.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Benzophenanthridines; Calcium; In Vitro Techniques; Male; Mice; Muscle Contraction; NG-Nitroarginine Methyl Ester; Penis; Phenylephrine; Protein Kinase C; Vasoconstriction

2008
Amplification effect and mechanism of action of ET-1 in U-46619-induced vasoconstriction in pig skin.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2001, Volume: 280, Issue:3

    The aim of this study was to investigate if a low concentration of endothelin-1 (ET-1; 8 x 10(-10) M) may amplify the skin vasoconstrictor effect of other vasoactive substances in the pathogenesis of skin vasospasm. Pig skin flaps (6 x 16 cm) were perfused with Krebs buffer equilibrated with 95% O(2) and 5% CO(2) at 37 degrees C and pH 7.4. Skin perfusion pressure measured by a pressure transducer and skin perfusion assessed by the dermofluorometry technique were used for assessment of skin vasoconstriction. We observed that ET-1 (8 x 10(-10) M) significantly amplified the concentration-dependent (10(-7)-10(-5) M) skin vasoconstrictor effect of norepinephrine. More importantly, we observed for the first time that this low concentration of ET-1 also amplified the concentration-dependent (10(-8)-10(-6) M) skin vasoconstrictor effect of the thromboxane A(2) mimetic U-46619, and this amplification effect of ET-1 was completely blocked by the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M). Conversely, the PKC activator phorbol 12,13-dibutyrate (10(-7) M) amplified the vasoconstrictor effect of U-46619. Furthermore, the sensitivity of the skin vasculature to the vasoconstrictor effect of extracellular Ca(2+) in U-46619-induced skin vasoconstriction was significantly enhanced in the presence of 8 x 10(-10) M ET-1. Finally, the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M) did not affect the amplification effect of ET-1 on U-46619-induced skin vasoconstriction. We conclude that a low concentration of ET-1 can amplify the skin vasoconstrictor effect of U-46619 independent of endogenous cyclooxygenase products, and the mechanism may involve activation of PKC and increase in sensitivity of the contractile apparatus to Ca(2+) in smooth muscle cells.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alkaloids; Animals; Benzophenanthridines; Calcium; Cyclooxygenase Inhibitors; Drug Synergism; Endothelin-1; Enzyme Activation; Enzyme Inhibitors; Indomethacin; Norepinephrine; Phenanthridines; Phorbol 12,13-Dibutyrate; Protein Kinase C; Skin; Swine; Vasoconstriction; Vasoconstrictor Agents

2001
Correlation between platelet aggregation and dephosphorylation of a 68 kDa protein revealed through the use of putative PKC inhibitors.
    Thrombosis and haemostasis, 1993, Oct-18, Volume: 70, Issue:4

    The efficacy of two structurally and functionally unrelated protein kinase C (PKC) inhibitors, chelerythrine and calphostin C, was assessed in intact human platelets by studying platelet aggregation in response to stimulation with phorbol 12-myristate 13-acetate (PMA) or the thromboxane-A2 mimetic, U46619. Surprisingly, both inhibitors increased aggregation in response to PMA, but decreased aggregation in response to U46619. To further explore this phenomenon, gel electrophoresis of 32P-labelled proteins from PMA- or U46619-stimulated platelets in the presence and absence of the two putative PKC inhibitors was performed. Although neither chelerythrine nor calphostin C proved to be effective PKC inhibitors in intact human platelets, a strong correlation between the dephosphorylation of a 68 kDa protein and the rate of platelet aggregation was observed. From these results, the indiscriminate use of PKC inhibitors in whole platelets is questioned and attention is drawn to the role of protein dephosphorylation in platelet activation. The 68 kDa protein was the major phosphorylated substrate in resting platelets. Okadaic acid increased phosphorylation of this band, indicating active phosphate group turnover under resting conditions.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alkaloids; Benzophenanthridines; Blood Proteins; Humans; Male; Molecular Weight; Naphthalenes; Phenanthridines; Phosphorus Radioisotopes; Phosphorylation; Platelet Aggregation; Platelet Aggregation Inhibitors; Polycyclic Compounds; Prostaglandin Endoperoxides, Synthetic; Protein Kinase C; Signal Transduction; Tetradecanoylphorbol Acetate; Thromboxane A2

1993