15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid has been researched along with 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid* in 2 studies
2 other study(ies) available for 15-hydroxy-11-alpha-9-alpha-(epoxymethano)prosta-5-13-dienoic-acid and 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid
Article | Year |
---|---|
Catalytic consumption of nitric oxide by prostaglandin H synthase-1 regulates platelet function.
Nitric oxide (( small middle dot)NO) plays a central role in vascular homeostasis via regulation of smooth muscle relaxation and platelet aggregation. Although mechanisms for ( small middle dot)NO formation are well known, removal pathways are less well characterized, particularly in cells that respond to ( small middle dot)NO through activation of soluble guanylate cyclase. Herein, we report that ( small middle dot)NO is catalytically consumed by prostaglandin H synthase-1 (PGHS-1) through acting as a reducing peroxidase substrate. With purified ovine PGHS-1, ( small middle dot)NO consumption requires peroxide (LOOH or H(2)O(2)), with a K(m)( (app)) for 15(S)hydroperoxyeicosatetraenoic acid (HPETE) of 3. 27 +/- 0.35 microm. During this, 2 mol ( small middle dot)NO are consumed per mol HPETE, and loss of HPETE hydroperoxy group occurs with retention of the conjugated diene spectrum. Hydroperoxide-stimulated ( small middle dot)NO consumption requires heme incorporation, is not inhibited by indomethacin, and is further stimulated by the reducing peroxidase substrate, phenol. PGHS-1-dependent ( small middle dot)NO consumption also occurs during arachidonate, thrombin, or activation of platelets (1-2 microm.min(-1) for typical plasma platelet concentrations) and prevents ( small middle dot)NO stimulation of platelet soluble guanylate cyclase. Platelet sensitivity to ( small middle dot)NO as an inhibitor of aggregation is greater using a platelet-activating stimulus () that does not cause ( small middle dot)NO consumption, indicating that this mechanism overcomes the anti-aggregatory effects of ( small middle dot)NO. Catalytic consumption of ( small middle dot)NO during eicosanoid synthesis thus represents both a novel proaggregatory function for PGHS-1 and a regulated mechanism for vascular ( small middle dot)NO removal. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Arachidonic Acid; Blood Platelets; Catalysis; Cattle; Cyclooxygenase 1; Glutathione; Humans; Hydrogen Peroxide; Isoenzymes; Kinetics; Leukotrienes; Lipid Peroxides; Membrane Proteins; Nitric Oxide; Nitroso Compounds; Platelet Aggregation; Platelet Aggregation Inhibitors; Prostaglandin-Endoperoxide Synthases; S-Nitrosoglutathione; Sheep; Substrate Specificity; Thrombin | 2000 |
Interleukin-1 stimulates Jun N-terminal/stress-activated protein kinase by an arachidonate-dependent mechanism in mesangial cells.
We have studied interleukin-1 (IL-1)-stimulated signals and gene expression in mesangial cells (MCs) to identify molecular mechanisms of MC activation, a process characteristic of glomerular inflammation. The JNK1 pathway has been implicated in cell fate decisions, and IL-1 stimulates the Jun N-terminal/stress-activated protein kinases (JNK1/SAPK). However, early postreceptor mechanisms by which IL-1 activates these enzymes remain unclear. Free arachidonic acid (AA) activates several protein kinases, and because IL-1 rapidly stimulates phospholipase A2 (PLA2) activity release AA, IL-1-induced activation of JNK1/SAPK may be mediated by AA release.. MCs were grown from collagenase-treated glomeruli, and JNK/SAPK activity in MC lysates was determined using an immunocomplex kinase assay.. Treatment of MCs with IL-1 alpha induced a time-dependent increase in JNK1/SAPK kinase activity, assessed by phosphorylation of the activating transcription factor-2 (ATF-2). Using similar incubation conditions, IL-1 also increased [3H]AA release from MCs. Pretreatment of MCs with aristolochic acid, a PLA2 inhibitor, concordantly reduced IL-1-regulated [3H]AA release and JNK1/SAPK activity, suggesting that cytosolic AA in part mediates IL-1-induced JNK1/SAPK activation. Addition of AA stimulated JNK1/SAPK activity in a time- and concentration-dependent manner. This effect was AA specific, as only AA and its precursor linoleic acid stimulated JNK1/SAPK activity. Other fatty acids failed to activate JNK1/SAPK. Pretreatment of MCs with specific inhibitors of AA oxidation by cyclooxygenase, lipoxygenase, and cytochrome P-450 epoxygenase had no effect on either IL-1- or AA-induced JNK1/SAPK activation. Furthermore, stimulation of MCs with the exogenous cyclooxygenase-, lipoxygenase-, phosphodiesterase-, and epoxygenase-derived arachidonate metabolites, in contrast to AA itself, did not activate JNK1/SAPK.. We conclude that IL-1-stimulated AA release, in part, mediates stimulation of JNK1/SAPK activity and that AA activates JNK1/SAPK by a mechanism that does not require enzymatic oxygenation. JNK1 signaling pathway components may provide molecular switches that mediate structural rearrangements and biochemical processes characteristic of MC activation and could provide a novel target(s) for therapeutic intervention. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Aristolochic Acids; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Dinoprostone; Enzyme Activation; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glomerular Mesangium; Interleukin-1; JNK Mitogen-Activated Protein Kinases; Leukotrienes; Lipid Peroxides; Mitogen-Activated Protein Kinases; Nephritis; Phenanthrenes; Phosphodiesterase Inhibitors; Phospholipases A; Phospholipases A2; Rats; Signal Transduction; Stearic Acids; Tritium; Vasoconstrictor Agents | 1999 |