15-acetyldeoxynivalenol has been researched along with indoleacetic-acid* in 2 studies
2 other study(ies) available for 15-acetyldeoxynivalenol and indoleacetic-acid
Article | Year |
---|---|
Multiple metabolic pathways for metabolism of l-tryptophan in Fusarium graminearum.
Fusarium graminearum is a plant pathogen that can cause the devastating cereal grain disease fusarium head blight in temperate regions of the world. Previous studies have shown that F. graminearum can synthetize indole-3-acetic acid (auxin) using l-tryptophan (L-TRP)-dependent pathways. In the present study, we have taken a broader approach to examine the metabolism of L-TRP in F. graminearum liquid culture. Our results showed that F. graminearum was able to transiently produce the indole tryptophol when supplied with L-TRP. Comparative gene expression profiling between L-TRP-treated and control cultures showed that L-TRP treatment induced the upregulation of a series of genes with predicted function in the metabolism of L-TRP via anthranilic acid and catechol towards the tricarboxylic acid cycle. It is proposed that this metabolic activity provides extra energy for 15-acetyldeoxynivalenol production, as observed in our experiments. This is the first report of the use of L-TRP to increase energy resources in a Fusarium species. Topics: Edible Grain; Fusarium; Gene Expression Profiling; Indoleacetic Acids; Indoles; Metabolic Networks and Pathways; Microarray Analysis; Trichothecenes; Triticum; Tryptophan | 2017 |
Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.
Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. Topics: Biosynthetic Pathways; Fusarium; Indoleacetic Acids; Indoles; Mycelium; Plant Growth Regulators; Spores, Fungal; Trichothecenes; Triticum; Tryptamines; Tryptophan | 2016 |