14-hydroxydocosahexaenoate has been researched along with 18-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 2 studies
1 trial(s) available for 14-hydroxydocosahexaenoate and 18-hydroxy-5-8-11-14-eicosatetraenoic-acid
Article | Year |
---|---|
The effects of alcohol on plasma lipid mediators of inflammation resolution in patients with Type 2 diabetes mellitus.
Type 2 diabetes mellitus is characterized by peripheral insulin resistance and low-grade systemic inflammation. Inflammation resolution is recognised as an important process driven by specialised pro-resolving mediators of inflammation (SPMs) and has the potential to moderate chronic inflammation. Alcohol has the potential to affect synthesis of SPMs by altering key enzymes involved in SPM synthesis and may influence ongoing inflammation associated with Type 2 diabetes mellitus.. (i) To examine the effects of alcohol consumed as red wine on plasma SPM in men and women with Type 2 diabetes in a randomised controlled trial and (ii) compare baseline plasma SPM levels in the same patients with those of healthy volunteers.. Twenty-four patients with Type 2 diabetes mellitus were randomized to a three-period crossover study with men drinking red wine 300 ml/day (∼31 g alcohol/day) and women drinking red wine 230 ml/day (∼24 g alcohol/day), or equivalent volumes of dealcoholized red wine (DRW) or water, each for 4 weeks. The SPM 18-hydroxyeicosapentaenoic acid (18-HEPE), E-series resolvins (Rv) (RvE1-RvE3), 17-hydroxydocosahexaenoic acid (17-HDHA), and D-series resolvins (RvD1, 17R-RvD1, RvD2, RvD5), 14-hydroxydocosahexaenoic acid (14-HDHA) and Maresin 1 were measured at the end of each period. A baseline comparison of plasma SPM, hs CRP, lipids and glucose was made with healthy volunteers.. Red wine did not differentially affect any of the SPM measured when compared with DRW or water. Baseline levels of the hs-CRP and the SPM 18-HEPE, 17-HDHA, RvD1 and 17R-RvD1 in patients with Type 2 diabetes mellitus were all significantly elevated compared with healthy controls and remained so after adjusting for age and gender.. Moderate alcohol consumption as red wine does not alter plasma SPM in patients with Type 2 diabetes mellitus. The elevation of SPM levels compared with healthy volunteers may be a homeostatic response to counter ongoing inflammation. Topics: Alcohol Drinking; C-Reactive Protein; Cross-Over Studies; Diabetes Mellitus, Type 2; Docosahexaenoic Acids; Female; Humans; Hydroxyeicosatetraenoic Acids; Inflammation Mediators; Lipids; Male; Middle Aged; Wine | 2018 |
1 other study(ies) available for 14-hydroxydocosahexaenoate and 18-hydroxy-5-8-11-14-eicosatetraenoic-acid
Article | Year |
---|---|
Disruption of pulmonary resolution mediators contribute to exacerbated silver nanoparticle-induced acute inflammation in a metabolic syndrome mouse model.
Pre-existing conditions modulate sensitivity to numerous xenobiotic exposures such as air pollution. Specifically, individuals suffering from metabolic syndrome (MetS) demonstrate enhanced acute inflammatory responses following particulate matter inhalation. The mechanisms associated with these exacerbated inflammatory responses are unknown, impairing interventional strategies and our understanding of susceptible populations. We hypothesize MetS-associated lipid dysregulation influences mediators of inflammatory resolution signaling contributing to increased acute pulmonary toxicity. To evaluate this hypothesis, healthy and MetS mouse models were treated with either 18-hydroxy eicosapentaenoic acid (18-HEPE), 14-hydroxy docosahexaenoic acid (14-HDHA), 17-hydroxy docosahexaenoic acid (17-HDHA), or saline (control) via intraperitoneal injection prior to oropharyngeal aspiration of silver nanoparticles (AgNP). In mice receiving saline treatment, AgNP exposure resulted in an acute pulmonary inflammatory response that was exacerbated in MetS mice. A targeted lipid assessment demonstrated 18-HEPE, 14-HDHA, and 17-HDHA treatments altered lung levels of specialized pro-resolving lipid mediators (SPMs). 14-HDHA and 17-HDHA treatments more efficiently reduced the exacerbated acute inflammatory response in AgNP exposed MetS mice as compared to 18-HEPE. This included decreased neutrophilic influx, diminished induction of inflammatory cytokines/chemokines, and reduced alterations in SPMs. Examination of SPM receptors determined baseline reductions in MetS mice compared to healthy as well as decreases due to AgNP exposure. Overall, these results demonstrate AgNP exposure disrupts inflammatory resolution, specifically 14-HDHA and 17-HDHA derived SPMs, in MetS contributing to exacerbated acute inflammatory responses. Our findings identify a potential mechanism responsible for enhanced susceptibility in MetS that can be targeted for interventional therapeutic approaches. Topics: Animals; Anti-Inflammatory Agents; Cytokines; Diet, High-Fat; Disease Models, Animal; Docosahexaenoic Acids; Gene Expression Regulation; Hydroxyeicosatetraenoic Acids; Inflammation Mediators; Lipid Metabolism; Lung; Male; Metabolic Syndrome; Metal Nanoparticles; Mice, Inbred C57BL; Pneumonia; Signal Transduction; Silver Compounds | 2021 |