14-15-leukotriene-b4 and 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid

14-15-leukotriene-b4 has been researched along with 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid* in 1 studies

Other Studies

1 other study(ies) available for 14-15-leukotriene-b4 and 15-hydroperoxy-5-8-11-13-eicosatetraenoic-acid

ArticleYear
Evidence for a lipoxygenase mechanism in the biosynthesis of epoxide and dihydroxy leukotrienes from 15(S)-hydroperoxyicosatetraenoic acid by human platelets and porcine leukocytes.
    Proceedings of the National Academy of Sciences of the United States of America, 1983, Volume: 80, Issue:10

    Leukocyte preparations convert the hydroperoxy icosatetraenoic acids 5(S)-HPETE and 15(S)-HPETE to the unstable leukotriene epoxides LTA4 and 14,15-LTA4. In several ways, the conversion of 5- or 15-HPETE to leukotriene epoxide bears a formal mechanistic resemblance to the reaction catalyzed by the 12-lipoxygenase in the conversion of arachidonic acid to 12(S)-HPETE. Points of similarity include enzymatic removal of a hydrogen at carbon 10, double bond isomerization, and formation of a new carbon-to-oxygen bond. In the case of 15(S)-HPETE, two 8,15- and an erythro-14,15-dihydroxy acid (8,15- and 14,15-DiHETEs), which result from incorporation of molecular oxygen into each hydroxyl group, are coproducts in the formation of 14,15-LTA4. These facts prompted us to test the hypothesis that the biosynthesis of 14,15-LTA4 and of 8,15- and 14,15-DiHETEs from 15(S)-HPETE occurs by a mechanism similar to that observed in lipoxygenase reactions. Based on the results presented here, we conclude that the biosynthesis of 14,15-LTA4 and of 8,15- and 14,15-DiHETEs from 15(S)-HPETE occurs via a common intermediate and that, moreover, the formation of these metabolites from 15(S)-HPETE is catalyzed by an enzyme with many mechanistic features in common with the 12-lipoxygenase.

    Topics: Animals; Arachidonate Lipoxygenases; Arachidonic Acids; Blood Platelets; Humans; Leukocytes; Leukotriene A4; Leukotriene B4; Leukotrienes; Lipid Peroxides; Lipoxygenase; Stereoisomerism; Swine

1983