14-15-dihydroxyeicosatrienoic-acid and 14-15-epoxy-5-8-11-eicosatrienoic-acid

14-15-dihydroxyeicosatrienoic-acid has been researched along with 14-15-epoxy-5-8-11-eicosatrienoic-acid* in 19 studies

Other Studies

19 other study(ies) available for 14-15-dihydroxyeicosatrienoic-acid and 14-15-epoxy-5-8-11-eicosatrienoic-acid

ArticleYear
The role of soluble epoxide hydrolase in preeclampsia.
    Medical hypotheses, 2017, Volume: 108

    Preeclampsia is a serious complication of pregnancy characterized by the development of vasospasm, hypertension and often associated with proteinuria after the 20th week of gestation. Because termination of pregnancy results in the most efficacious resolution of preeclampsia, it is a leading cause of premature delivery worldwide. In pregnancy, 14,15-epoxyeicosatrienoic acids (EETs) have been shown to facilitate uterine blood flow during preeclampsia, in which the classic vasodilator agents such as nitric oxide and prostacyclin are reduced. EETs are converted to dihydroxyeicosatrienoic acids (DHETs) by the activity of soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH activity is increased in preeclampsia by measuring urinary 14,15-DHET in healthy and preeclamptic pregnant women. Urine samples were collected and incubated with or without β-glucuronidase to enable the measurement of both the glucuronidated and free forms of 14,15-DHET, which were quantified using a 14,15-DHET ELISA. Levels of total (free+glucuronidated) 14,15-DHET, which is a measurement of EET-dependent sEH activity, were higher in urine samples obtained from preeclamptic women compared to healthy pregnant women. Considering the fact that free+glucuronidated 14,15-DHET levels are increased in urine of preeclamptic women, we hypothesize that sEH expression or activity is augmented in these patients, reducing EET and increasing blood pressure. Moreover we suggest that novel anti-hypertensive agents that target sEH might be developed as therapeutics to control high blood pressure in women with preeclampsia.

    Topics: 8,11,14-Eicosatrienoic Acid; Adult; Antihypertensive Agents; Blood Pressure; Epoprostenol; Epoxide Hydrolases; Female; Glucuronidase; Humans; Hypertension; Maternal Age; Nitric Oxide; Pre-Eclampsia; Pregnancy; Pregnancy Complications; Vasoconstriction; Vasodilator Agents; Young Adult

2017
The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins.
    Lipids in health and disease, 2013, Oct-23, Volume: 12

    14,15-Epoxyeicosatrienoic acids (14,15-EETs) generated from arachidonic acid by cytochrome P450 epoxygenases have beneficial effects in certain cardiovascular diseases, and increased 14,15-EET levels protect the cardiovascular system. 14,15-EETs are rapidly hydrolyzed by soluble epoxide hydrolase (sEH) to the corresponding 14,15-dihydroxyeicosatrienoic acids (14,15-DHETs), which are generally less biologically active but more stable metabolite. A functionally relevant polymorphism of the CYP2J2 gene is independently associated with an increased risk of coronary heart disease (CHD), and the major CYP2J2 product is 14,15-EETs. 14,15-DHETs can be considered a relevant marker of CYP2J2 activity. Therefore, the aim of the present study was to evaluate the plasma 14,15-DHET levels to reflect the 14,15-EET levels in an indirectly way in patients with CHD, and to highlight the growing body of evidence that 14,15-EETs also play a role in anti-inflammatory and lipid-regulating effects in patients with CHD. This was achieved by investigating the relationship between 14,15-DHETs and high-sensitivity C-reactive protein (hs-CRP) and blood lipoproteins.. Samples of peripheral venous blood were drawn from 60 patients with CHD and 60 healthy controls. A 14,15-DHET enzyme-linked immunosorbent assay kit (14,15-DHET ELISA kit) was used to measure the plasma 14,15-DHET levels. Hs-CRP, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein-cholesterol levels were measured.. 14,15-DHET levels (2.53 ± 1.60 ng/mL) were significantly higher in patients with CHD as compared with those of the healthy controls (1.65 ± 1.54 ng/mL, P < 0.05). There was a significant positive correlation between 14,15-DHETs and hs-CRP levels (R = 0.286, P = 0.027). However, there was no significant correlation between 14,15-DHETs and blood lipoproteins (all, P > 0.05).. Increased plasma 14,15-DHET levels reflect the decreased of 14,15-EET levels in an indirectly way. Indicated that decreased plasma 14,15-EET levels might be involved in the inflammatory reaction process in atherosclerosis.

    Topics: 8,11,14-Eicosatrienoic Acid; Aged; C-Reactive Protein; Case-Control Studies; Cholesterol, HDL; Cholesterol, LDL; Coronary Disease; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Female; Humans; Inflammation; Male; Middle Aged; Statistics, Nonparametric; Triglycerides

2013
Soluble epoxide hydrolase dimerization is required for hydrolase activity.
    The Journal of biological chemistry, 2013, Mar-15, Volume: 288, Issue:11

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity.

    Topics: 8,11,14-Eicosatrienoic Acid; Dimerization; DNA Mutational Analysis; Epoxide Hydrolases; Genetic Complementation Test; HEK293 Cells; Humans; Hydrolases; Kinetics; Models, Molecular; Mutation; Polymorphism, Genetic; Solubility; Transfection

2013
Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease.
    Atherosclerosis, 2012, Volume: 222, Issue:2

    Preclinical and genetic epidemiologic studies suggest that modulating cytochrome P450 (CYP)-mediated arachidonic acid metabolism may have therapeutic utility in the management of coronary artery disease (CAD). However, predictors of inter-individual variation in CYP-derived eicosanoid metabolites in CAD patients have not been evaluated to date. Therefore, the primary objective was to identify clinical factors that influence CYP epoxygenase, soluble epoxide hydrolase (sEH), and CYP ω-hydroxylase metabolism in patients with established CAD.. Plasma levels of epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE) were quantified by HPLC-MS/MS in a population of patients with stable, angiographically confirmed CAD (N=82) and healthy volunteers from the local community (N=36). Predictors of CYP epoxygenase, sEH, and CYP ω-hydroxylase metabolic function were evaluated by regression.. Obesity was significantly associated with low plasma EET levels and 14,15-EET:14,15-DHET ratios. Age, diabetes, and cigarette smoking also were significantly associated with CYP epoxygenase and sEH metabolic activity, while only renin-angiotensin system inhibitor use was associated with CYP ω-hydroxylase metabolic activity. Compared to healthy volunteers, both obese and non-obese CAD patients had significantly higher plasma EETs (P<0.01) and epoxide:diol ratios (P<0.01), whereas no difference in 20-HETE levels was observed (P=NS).. Collectively, these findings suggest that CYP-mediated eicosanoid metabolism is dysregulated in certain subsets of CAD patients, and demonstrate that biomarkers of CYP epoxygenase and sEH, but not CYP ω-hydroxylase, metabolism are altered in stable CAD patients relative to healthy individuals. Future studies are necessary to determine the therapeutic utility of modulating these pathways in patients with CAD.

    Topics: 8,11,14-Eicosatrienoic Acid; Age Factors; Biomarkers; Case-Control Studies; Chromatography, High Pressure Liquid; Coronary Angiography; Coronary Artery Disease; Cross-Sectional Studies; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Diabetes Mellitus; Eicosanoids; Epoxide Hydrolases; Female; Humans; Hydroxyeicosatetraenoic Acids; Hydroxylation; Male; Middle Aged; North Carolina; Obesity; Regression Analysis; Risk Assessment; Risk Factors; Severity of Illness Index; Smoking; Tandem Mass Spectrometry

2012
Angiotensin II regulates adrenal vascular tone through zona glomerulosa cell-derived EETs and DHETs.
    Hypertension (Dallas, Tex. : 1979), 2011, Volume: 57, Issue:2

    Elevated concentrations of aldosterone are associated with several cardiovascular diseases. Angiotensin II (Ang II) increases aldosterone secretion and adrenal blood flow. This concurrent increase in steroidogenesis and adrenal blood flow is not understood. We investigated the role of zona glomerulosa (ZG) cells in the regulation of vascular tone of bovine adrenal cortical arteries by Ang II. ZG cells enhanced endothelium-dependent relaxations to Ang II. The ZG cell-dependent relaxations to Ang II were unchanged by removing the endothelium-dependent response to Ang II. These ZG cell-mediated relaxations were ablated by cytochrome P450 inhibition, epoxyeicosatrienoic acid (EET) antagonism, and potassium channel blockade. Analysis of ZG cell EET production by liquid chromatography/mass spectrometry demonstrated an increase in EETs and dihydroxyeicosatrienoic acids with Ang II stimulation. These EETs and dihydroxyeicosatrienoic acids produced similar concentration-dependent relaxations of adrenal arteries, which were attenuated by EET antagonism. Whole-cell potassium currents of adrenal artery smooth muscle cells were increased by Ang II stimulation in the presence of ZG cells but decreased in the absence of ZG cells. This increase in potassium current was abolished by iberiotoxin. Similarly, 14,15-EET induced concentration-dependent increases in potassium current, which was abolished by iberiotoxin. ZG cell aldosterone release was not directly altered by EETs. These data suggest that Ang II stimulates ZG cells to release EETs and dihydroxyeicosatrienoic acids, resulting in potassium channel activation and relaxation of adrenal arteries. This provides a mechanism by which Ang II concurrently increases adrenal blood flow and steroidogenesis.

    Topics: 8,11,14-Eicosatrienoic Acid; Adrenal Glands; Aldosterone; Angiotensin II; Animals; Arachidonic Acid; Arteries; Cattle; Cells, Cultured; Dose-Response Relationship, Drug; Epoxide Hydrolases; In Vitro Techniques; Membrane Potentials; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Patch-Clamp Techniques; Potassium Channels; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents; Zona Glomerulosa

2011
Development of an online SPE-LC-MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors.
    Analytical and bioanalytical chemistry, 2011, Volume: 400, Issue:5

    Soluble epoxide hydrolase (sEH) is a promising therapeutic target for the treatment of hypertension, pain, and inflammation-related diseases. In order to enable the development of sEH inhibitors (sEHIs), assays are needed for determination of their potency. Therefore, we developed a new method utilizing an epoxide of arachidonic acid (14(15)-EpETrE) as substrate. Incubation samples were directly injected without purification into an online solid phase extraction (SPE) liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) setup allowing a total run time of only 108 s for a full gradient separation. Analytes were extracted from the matrix within 30 s by turbulent flow chromatography. Subsequently, a full gradient separation was carried out on a 50X2.1 mm RP-18 column filled with 1.7 μm core-shell particles. The analytes were detected with high sensitivity by ESI-MS-MS in SRM mode. The substrate 14(15)-EpETrE eluted at a stable retention time of 96 ± 1 s and its sEH hydrolysis product 14,15-DiHETrE at 63 ± 1 s with narrow peak width (full width at half maximum height: 1.5 ± 0.1 s). The analytical performance of the method was excellent, with a limit of detection of 2 fmol on column, a linear range of over three orders of magnitude, and a negligible carry-over of 0.1% for 14,15-DiHETrE. The enzyme assay was carried out in a 96-well plate format, and near perfect sigmoidal dose-response curves were obtained for 12 concentrations of each inhibitor in only 22 min, enabling precise determination of IC(50) values. In contrast with other approaches, this method enables quantitative evaluation of potent sEHIs with picomolar potencies because only 33 pmol L(-1) sEH were used in the reaction vessel. This was demonstrated by ranking ten compounds by their activity; in the fluorescence method all yielded IC(50) ≤ 1 nmol L(-1). Comparison of 13 inhibitors with IC(50) values >1 nmol L(-1) showed a good correlation with the fluorescence method (linear correlation coefficient 0.9, slope 0.95, Spearman's rho 0.9). For individual compounds, however, up to eightfold differences in potencies between this and the fluorescence method were obtained. Therefore, enzyme assays using natural substrate, as described here, are indispensable for reliable determination of structure-activity relationships for sEH inhibition.

    Topics: 8,11,14-Eicosatrienoic Acid; Enzyme Inhibitors; Epoxide Hydrolases; Humans; Solid Phase Extraction; Tandem Mass Spectrometry

2011
Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2011, Sep-01, Volume: 879, Issue:25

    Substrates and products of soluble epoxide hydrolase (sEH) such as 14,15-epoxyeicosatrienoic acid (14,15-EET), 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), leukotoxin, and leukotoxin diol are potential biomarkers for assessing sEH activity in clinical trial subjects. To quantify them, we have developed and validated a semi-automated and relatively high-throughput assay in a 96-well plate format using liquid chromatography-mass spectrometry. 14,15-EET, 14,15-DHET, leukotoxin and leukotoxin diol, as well as their deuterium labeled internal standards were extracted from human plasma by liquid-liquid extraction using ethyl acetate. The four analytes were separated from other endogenous lipid isomers using liquid chromatography coupled with tandem mass spectrometry. The method was validated over a concentration range of 0.05-50 ng/mL. The validation results show that the method is precise, accurate and well-suited for analysis of clinical samples. The turn-around rate of the assay is approximately 200 samples per day.

    Topics: 8,11,14-Eicosatrienoic Acid; Biomarkers; Chromatography, Liquid; Epoxide Hydrolases; Female; Humans; Linoleic Acids; Male; Reproducibility of Results; Sensitivity and Specificity; Stearic Acids; Tandem Mass Spectrometry

2011
Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats.
    Basic & clinical pharmacology & toxicology, 2008, Volume: 102, Issue:5

    Cytochrome P450-derived epoxyeicosatrienoic acids (EET) are biologically active metabolites of arachidonic acid that have potent effects on renal vascular reactivity and tubular ion transport and have been implicated in the control of blood pressure. EETs are hydrolyzed to their less active diols, dihydroxyeicosatrienoic acids (DHET), by the enzyme soluble epoxide hydrolase (sEH). 1,3-dicyclohexylurea (DCU), a potent sEH inhibitor, lowers systemic blood pressure in spontaneously hypertensive rats when dosed intraperitoneally. However, DCU has poor aqueous solubility, posing a challenge for in vivo oral delivery. To overcome this limitation, we formulated DCU in a nanosuspension using wet milling. Milling reduced particle size, increasing the total surface area by approximately 40-fold. In rats chronically infused with angiotensin II, the DCU nanosuspension administered orally twice daily for 4 days produced plasma exposures an order of magnitude greater than unmilled DCU and lowered blood pressure by nearly 30 mmHg. Consistent with the mechanism of sEH inhibition, DCU increased plasma 14,15-EET and decreased plasma 14,15-DHET levels. These data confirm the antihypertensive effect of sEH inhibition and demonstrate that greatly enhanced exposure of a low-solubility compound is achievable by oral delivery using a nanoparticle drug delivery system.

    Topics: 8,11,14-Eicosatrienoic Acid; Administration, Oral; Animals; Blood Pressure; Chromatography, Liquid; Disease Models, Animal; Epoxide Hydrolases; Hypertension; Male; Nanoparticles; Particle Size; Rats; Rats, Sprague-Dawley; Solubility; Suspensions; Tandem Mass Spectrometry; Urea

2008
14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha.
    American journal of physiology. Heart and circulatory physiology, 2006, Volume: 290, Issue:1

    Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha). We find that among the EET and DHET regioisomers, 14,15-DHET is the most potent PPARalpha activator in a COS-7 cell expression system. Incubation with 10 microM 14,15-DHET produced a 12-fold increase in PPARalpha-mediated luciferase activity, an increase similar to that produced by the PPARalpha agonist Wy-14643 (20 microM). Although 10 microM 14,15-EET produced a threefold increase in luciferase activity, this was abrogated by the SEH inhibitor dicyclohexylurea. 14-Hexyloxytetradec-5(Z)-enoic acid, a 14,15-EET analog that cannot be converted to a DHET, did not activate PPARalpha. However, PPARalpha was activated by 2-(14,15-epoxyeicosatrienoyl)glycerol, which was hydrolyzed and the released 14,15-EET converted to 14,15-DHET. COS-7 cells incorporated 14,15-[3H]DHET from the medium, and the cells also retained a small amount of the DHET formed during incubation with 14,15-[3H]EET. Binding studies indicated that 14,15-[3H]DHET binds to the ligand binding domain of PPARalpha with a Kd of 1.4 microM. Furthermore, 14,15-DHET increased the expression of carnitine palmitoyltransferase 1A, a PPARalpha-responsive gene, in transfected HepG2 cells. These findings suggest that 14,15-DHET, produced from 14,15-EET by the action of SEH, may function as an endogenous activator of PPARalpha.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Carnitine O-Palmitoyltransferase; Cell Line, Tumor; Chlorocebus aethiops; COS Cells; Epoxide Hydrolases; Epoxy Compounds; Humans; PPAR alpha; Urea

2006
Endothelium-derived 2-arachidonylglycerol: an intermediate in vasodilatory eicosanoid release in bovine coronary arteries.
    American journal of physiology. Heart and circulatory physiology, 2005, Volume: 288, Issue:3

    Acetylcholine stimulates the release of endothelium-derived arachidonic acid (AA) metabolites including prostacyclin and epoxyeicosatrienoic acids (EETs), which relax coronary arteries. However, mechanisms of endothelial cell (EC) AA activation remain undefined. We propose that 2-arachidonylglycerol (2-AG) plays an important role in this pathway. An AA metabolite isolated from bovine coronary ECs was identified as 2-AG by mass spectrometry. In ECs pretreated with the fatty acid amidohydrolase inhibitor diazomethylarachidonyl ketone (DAK; 20 micromol/l), methacholine (10 micromol/l)-stimulated 2-AG release was blocked by the phospholipase C inhibitor U-73122 (10 micromol/l) or the diacylglycerol lipase inhibitor RHC-80267 (40 micromol/l). In U-46619-preconstricted bovine coronary arterial rings, 2-AG relaxations averaging 100% at 10 micromol/l were inhibited by endothelium removal, by DAK, by the hydrolase inhibitor methyl arachidonylfluorophosphate (10 micromol/l), by the cyclooxygenase inhibitor indomethacin (10 micromol/l), but not by the CB1 cannabinoid receptor antagonist SR-141716 (1 micromol/l). The cytochrome P-450 inhibitor SKF-525a (10 micromol/l) and the 14,15-epoxyeicosa-5Z-enoic acid EET antagonist (14,15-EEZE; 10 micromol/l) further attenuated the indomethacin-resistant relaxations. The nonhydrolyzable 2-AG analogs noladin ether, 2-AG amide, and 14,15-EET glycerol amide did not induce relaxation. N-nitro-L-arginine-resistant relaxations to methacholine were also inhibited by U-73122, RHC-80267, and DAK. 14,15-EET glycerol ester increased opening of large-conductance K(+) channels 12-fold in cell-attached patches of isolated smooth muscle cells and induced relaxations averaging 95%. These results suggest that methacholine stimulates EC 2-AG production through phospholipase C and diacylglycerol lipase activation. 2-AG is further hydrolyzed to AA, which is metabolized to vasoactive eicosanoids. These studies reveal a role for 2-AG in EC AA release and the regulation of coronary tone.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arachidonic Acids; Carbon Radioisotopes; Cattle; Cells, Cultured; Coronary Vessels; Endocannabinoids; Endothelium, Vascular; Glycerides; Hydroxyeicosatetraenoic Acids; Vasodilation

2005
Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids.
    Arteriosclerosis, thrombosis, and vascular biology, 2004, Volume: 24, Issue:3

    Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced by endothelial cells. In many vessels, they are an endothelium-derived hyperpolarizing factor (EDHF). However, it is unknown whether they act as an EDHF on platelets and whether this has functional consequences.. Flow cytometric measurement of platelet membrane potential using the fluorescent dye DiBac4 showed a resting potential of -58+/-9 mV. Different EET regioisomers hyperpolarized platelets down to -69+/-2 mV, which was prevented by the non-specific potassium channel inhibitor charybdotoxin and by use of a blocker of calcium-activated potassium channels of large conductance (BK(Ca) channels), iberiotoxin. EETs inhibited platelet adhesion to endothelial cells under static and flow conditions. Exposure to EETs inhibited platelet P-selectin expression in response to ADP. Stable overexpression of cytochrome P450 2C9 in EA.hy926 cells (EA.hy2C9 cells) resulted in release of EETs and a factor that hyperpolarized platelets and inhibited their adhesion to endothelial cells. These effects were again inhibited by charybdotoxin and iberiotoxin.. EETs hyperpolarize platelets and inactivate them by inhibiting adhesion molecule expression and platelet adhesion to cultured endothelial cells in a membrane potential-dependent manner. They act as an EDHF on platelets and might be important mediators of the anti-adhesive properties of vascular endothelium.

    Topics: 8,11,14-Eicosatrienoic Acid; Apamin; Aryl Hydrocarbon Hydroxylases; Biological Factors; Blood Platelets; Cells, Cultured; Charybdotoxin; Cytochrome P-450 CYP2C9; Endothelial Cells; Endothelium, Vascular; Humans; Hydroxyeicosatetraenoic Acids; Ion Channels; Membrane Potentials; Peptides; Platelet Adhesiveness; Platelet Aggregation; Potassium Channels; Recombinant Fusion Proteins; Transfection; Umbilical Veins

2004
Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels.
    American journal of physiology. Heart and circulatory physiology, 2004, Volume: 287, Issue:6

    We investigated the effects of soluble epoxide hydrolase (sEH) inhibition on epoxyeicosatrienoic acid (EET) metabolism in intact human blood vessels, including the human saphenous vein (HSV), coronary artery (HCA), and aorta (HA). When HSV segments were perfused with 2 micromol/l 14,15-[3H]EET for 4 h, >60% of radioactivity in the perfusion medium was converted to 14,15-dihydroxyeicosatrienoic acid (DHET). Similar results were obtained with endothelium-denuded vessels. 14,15-DHET was released from both the luminal and adventitial surfaces of the HSV. When HSVs were incubated with 14,15-[3H]EET under static (no flow) conditions, formation of 14,15-DHET was detected within 15 min and was inhibited by the selective sEH inhibitors N,N'-dicyclohexyl urea and N-cyclohexyl-N'-dodecanoic acid urea (CUDA). Similarly, CUDA inhibited the conversion of 11,12-[3H]EET to 11,12-DHET by the HSV. sEH inhibition enhanced the uptake of 14,15-[3H]EET and facilitated the formation of 10,11-epoxy-16:2, a beta-oxidation product. The HCA and HA converted 14,15-[3H]EET to DHET, and this also was inhibited by CUDA. These findings in intact human blood vessels indicate that conversion to DHET is the predominant pathway for 11,12- and 14,15-EET metabolism and that sEH inhibition can modulate EET metabolism in vascular tissue.

    Topics: 8,11,14-Eicosatrienoic Acid; Cells, Cultured; Cyclohexanes; Endothelium, Vascular; Epoxide Hydrolases; Epoxy Compounds; Humans; Hydroxyeicosatetraenoic Acids; Lauric Acids; Lipid Metabolism; Muscle, Smooth, Vascular; Oxidation-Reduction; Saphenous Vein; Solubility; Tritium; Vasodilator Agents

2004
Identification and regulation of a new vertebrate cytochrome P450 subfamily, the CYP2Ps, and functional characterization of CYP2P3, a conserved arachidonic acid epoxygenase/19-hydroxylase.
    Archives of biochemistry and biophysics, 2003, Mar-15, Volume: 411, Issue:2

    Three genes cloned from Fundulus heteroclitus (killifish) define a new P450 subfamily, CYP2P. Structurally, the CYP2Ps are related to fish CYP2Ns and mammalian CYP2Js. CYP2P transcripts are expressed predominantly in liver and intestine. CYP2P3 coexpressed with P450 oxidoreductase in a baculovirus system catalyzed benzphetamine-N-demethylation and arachidonic acid oxidation, forming 14,15-, 11,12-, and 8,9-epoxyeicosatrienoic acids and 19-hydroxyeicosatetraenoic acid. CYP2P3 regio- and enantioselectivities with arachidonic acid were remarkably similar to human CYP2J2 and rat CYP2J3. Epoxyeicosatrienoic acids and their corresponding hydration products, the dihydroxyeicosatrienoic acids, were detected in killifish liver and intestine, indicating metabolism of arachidonic acid by killifish P450s in vivo. Levels of these products in killifish intestine were higher than those in mammalian intestine. 12-O-Tetradecanoyl phorbol 13-acetate suppressed expression of CYP2P2 and CYP2P3 in killifish intestine; fasting itself suppressed expression of CYP2P2/3 but not CYP2P1. In rat intestine fasting similarly depressed the levels of CYP2J proteins. The CYP2Ps and the CYP2Js appear to be derived from a common ancestral gene, likely a fatty acid monooxygenase.

    Topics: 8,11,14-Eicosatrienoic Acid; Amino Acid Sequence; Animals; Arachidonic Acid; Benzphetamine; Cloning, Molecular; Conserved Sequence; Cytochrome P-450 Enzyme System; Fasting; Fundulidae; Gene Expression Regulation, Enzymologic; Hydroxyeicosatetraenoic Acids; Male; Molecular Sequence Data; Multigene Family; Organ Specificity; Phylogeny; Rats; Rats, Inbred F344; RNA, Messenger; Sequence Alignment; Tetradecanoylphorbol Acetate; Vertebrates

2003
14,15-Dihydroxyeicosatrienoic acid relaxes bovine coronary arteries by activation of K(Ca) channels.
    American journal of physiology. Heart and circulatory physiology, 2002, Volume: 282, Issue:5

    Epoxyeicosatrienoic acids (EETs) cause vascular relaxation by activating smooth muscle large conductance Ca(2+)-activated K(+) (K(Ca)) channels. EETs are metabolized to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. We examined the contribution of 14,15-DHET to 14,15-EET-induced relaxations and characterized its mechanism of action. 14,15-DHET relaxed U-46619-precontracted bovine coronary artery rings but was approximately fivefold less potent than 14,15-EET. The relaxations were inhibited by charybdotoxin, iberiotoxin, and increasing extracellular K(+) to 20 mM. In isolated smooth muscle cells, 14,15-DHET increased an iberiotoxin-sensitive, outward K(+) current and increased K(Ca) channel activity in cell-attached patches and inside-out patches only when GTP was present. 14,15-[(14)C]EET methyl ester (Me) was converted to 14,15-[(14)C]DHET-Me, 14,15-[(14)C]DHET, and 14,15-[(14)C]EET by coronary arterial rings and endothelial cells but not by smooth muscle cells. The metabolism to 14,15-DHET was inhibited by the epoxide hydrolase inhibitors 4-phenylchalcone oxide (4-PCO) and BIRD-0826. Neither inhibitor altered relaxations to acetylcholine, whereas relaxations to 14,15-EET-Me were increased slightly by BIRD-0826 but not by 4-PCO. 14,15-DHET relaxes coronary arteries through activation of K(Ca) channels. Endothelial cells, but not smooth muscle cells, convert EETs to DHETs, and this conversion results in a loss of vasodilator activity.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Calcium; Cattle; Charybdotoxin; Coronary Vessels; Electric Conductivity; Endothelium, Vascular; Enzyme Inhibitors; Epoxide Hydrolases; GTP-Binding Proteins; Guanosine Triphosphate; Hydroxyeicosatetraenoic Acids; Muscle Relaxation; Muscle, Smooth, Vascular; Peptides; Potassium Channels

2002
Ontogenesis of CYP2C-dependent arachidonic acid metabolism in the human liver: relationship with sudden infant death syndrome.
    Pediatric research, 2000, Volume: 47, Issue:5

    A modification of the human monooxygenase system have been previously associated with the sudden infant death syndrome (SIDS): the hepatic CYP2C content was markedly enhanced and resulted from an activation of CYP2C gene transcription. To determine the possible consequence of the up-regulation of CYP2C in SIDS, we examined the metabolism of arachidonic acid (AA) an endogenous substrate of CYP2C involved in the physiologic regulation of vascular tone. The overall AA metabolism was extremely low during the fetal period and rose after birth to generate 14,15 epoxyeicosatrienoic acid (EET), 11,12 EET and the sum of 5,6 dihydroxyeicosatrienoic acid (diHETE)+omega/omega-1 hydroxy AA. In SIDS, the accumulation of CYP2C proteins was associated with a significant increase in the formation of 14,15 and 11,12 diHETE, which were shown to be supported by individually expressed CYP2C8 and 2C9 and HETE1 (presumably 15 HETE). This increase was markedly inhibited by addition of sulfaphenazole, a selective inhibitor of CYP2C9. So, we propose that the higher CYP2C content in SIDS stimulates the production of EETs and diHETEs and might have severe pathologic consequences in children.

    Topics: 8,11,14-Eicosatrienoic Acid; Adult; Age Factors; Arachidonic Acid; Arachidonic Acids; Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2C9; Cytochrome P-450 Enzyme System; Humans; Hydroxyeicosatetraenoic Acids; Infant; Isoenzymes; Liver; Microsomes, Liver; NADP; Recombinant Proteins; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases; Sudden Infant Death; Up-Regulation

2000
Epoxide hydrolases regulate epoxyeicosatrienoic acid incorporation into coronary endothelial phospholipids.
    The American journal of physiology, 1999, Volume: 277, Issue:5

    Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4-phenylchalcone oxide (4-PCO, 20 micromol/l), before being incubated with (3)H-labeled 14,15-EET (14,15-[(3)H]EET). 4-PCO blocked conversion of 14,15-[(3)H]EET to 14,15-[(3)H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15-[(3)H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [(3)H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15-EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arteries; Bradykinin; Cells, Cultured; Chalcone; Chalcones; Coenzyme A Ligases; Coronary Vessels; Drug Synergism; Endothelium, Vascular; Enzyme Inhibitors; Epoxide Hydrolases; Hydroxyeicosatetraenoic Acids; Lipid Metabolism; Phospholipids; Swine; Vasodilation

1999
14,15-Epoxyeicosatrienoic acid inhibits prostaglandin E2 production in vascular smooth muscle cells.
    The American journal of physiology, 1998, Volume: 275, Issue:6

    14,15-Epoxyeicosatrienoic acid (EET), a cytochrome P-450 epoxygenase product of arachidonic acid (AA), reduced PGE2 formation by 40-75% in porcine aortic and murine brain microvascular smooth muscle cells. The inhibition was reversed 6-10 h after removal of 14,15-EET from the medium and was regioisomeric specific; 8,9-EET produced a smaller effect, whereas 11,12- and 5,6-EET were ineffective. Although the cells converted 14,15-EET to 14, 15-dihydroxyeicosatrienoic acid (14,15-DHET), 14,15-DHET did not inhibit PGE2 formation, and the 14,15-EET-induced inhibition was potentiated by 4-phenylchalcone oxide, an epoxide hydrolase inhibitor. The inhibition occurred when substrate amounts of AA were used and was not accompanied by enhanced production of other PGs, suggesting an effect on PGH synthase; however, in murine cells, 14, 15-EET did not reduce PGH synthase mRNA or protein. Moreover, the 14, 15-EET-induced decrease in PGE2 production was overcome by increasing the concentration of AA, but not oleic acid (which is not a substrate for PGH synthase). These findings suggest that 14,15-EET competitively inhibits PGH synthase activity in vascular smooth muscle cells. The 14,15-EET-induced inhibition of PGE2 production resulted in potentiation of platelet-derived growth factor-induced smooth muscle cell proliferation, suggesting that the competitive inhibition of PGH synthase by 14,15-EET can affect growth responses in smooth muscle cells.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Aorta; Cell Division; Cells, Cultured; Cerebrovascular Circulation; Dinoprostone; Hydroxyeicosatetraenoic Acids; Microcirculation; Muscle, Smooth, Vascular; Platelet-Derived Growth Factor; Swine

1998
Determination of 14,15-epoxyeicosatrienoic acid and 14,15-dihydroxyeicosatrienoic acid by fluoroimmunoassay.
    Analytical biochemistry, 1997, Mar-15, Volume: 246, Issue:2

    A fluoroimmunoassay (FIA) for 14,15-epoxyeicosatrienoic acid (14,15-EET) and 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), cytochrome P450 epoxygenase products of arachidonic acid, was developed using fluorescence polarization. 14-15-EET was hydrolyzed and analyzed as 14,15-DHET. 14,15-DHET was conjugated to thyroglobulin and a specific antibody was raised in rabbits. Both [3H8]14,15-DHET in radioimmunoassay or fluorescein-labeled 14,15-DHET (14, 15-DHET*) in FIA bound to this antibody and were competitively displaced by 14,15-DHET. The binding activity and cross-reactivity of 14,15-DHET antibody were also studied by RIA compared to FIA. The antibody cross-reacted < or = 1% with 11,12-DHET and 14,15-EET and < 0.1% with other regioisomeric DHETs and arachidonic acid metabolites. The detection limit of 14,15-DHET was 2 pg/0.6 ml by FIA. Using this method, we found that A23187 stimulated the production of 14,15-EET by endothelial cells by angiotensin II stimulated 14,15-EET release from zona glomerulosa cells. The production of 14,15-EET in these samples was confirmed by gas chromatography/mass spectrometry. These studies demonstrate a sensitive and specific FIA for 14,15-EET and 14,15-DHET and that agonists stimulate the release of these eicosanoids in two cell types, bovine coronary artery endothelial cells and bovine zona glomerulosa cells.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antibodies; Cattle; Cells, Cultured; Cross Reactions; Endothelium, Vascular; Fluoroimmunoassay; Gas Chromatography-Mass Spectrometry; Hydroxyeicosatetraenoic Acids; Rabbits; Radioimmunoassay; Zona Glomerulosa

1997
Cytochrome P450 metabolites of arachidonic acid: rapid incorporation and hydration of 14,15-epoxyeicosatrienoic acid in arterial smooth muscle cells.
    Prostaglandins, leukotrienes, and essential fatty acids, 1997, Volume: 57, Issue:4-5

    Arachidonic acid is converted to epoxyeicosatrienoic acids (EETs) by cytochrome P450 monooxygenases. EETs produce arterial vasodilatation, and recent evidence suggests that they are endothelium-derived hyperpolarizing factors. In porcine coronary arteries contracted with a thromboxane mimetic agent, we find that relaxation is rapidly initiated by exposure to 14,15-EET. The relaxation slowly increases in magnitude, resulting in a response which is sustained for more than 10 min. Cultured porcine aortic smooth muscle cells rapidly take up [3H]14,15-EET. After 3 min, radioactivity is present in neutral lipids, phosphatidylcholine, and phosphatidylinositol. The cells also convert 14,15-EET to 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), and some DHET is detected in the medium after only 1 min of incubation. Like 14,15-EET, 14,15-DHET produces relaxation of the contracted coronary artery rings. These findings suggest that the incorporation into phospholipids and conversion to 14,15-DHET can occur at a rate that is fast enough to modulate the vasorelaxation produced by 14,15-EET.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arteries; Cytochrome P-450 Enzyme System; Hydroxyeicosatetraenoic Acids; Muscle Relaxation; Muscle, Smooth, Vascular; Phospholipids; Swine

1997