13-hydroperoxy-9-11-octadecadienoic-acid has been researched along with 13-hydroperoxy-9-11-15-octadecatrienoic-acid* in 5 studies
5 other study(ies) available for 13-hydroperoxy-9-11-octadecadienoic-acid and 13-hydroperoxy-9-11-15-octadecatrienoic-acid
Article | Year |
---|---|
Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis.
The CYP74C subfamily of fatty acid hydroperoxide transforming enzymes includes hydroperoxide lyases (HPLs) and allene oxide synthases (AOSs). This work reports a new facet of the putative CYP74C HPLs. Initially, we found that the recombinant CYP74C13_MT (Medicago truncatula) behaved predominantly as the epoxyalcohol synthase (EAS) towards the 9(S)-hydroperoxide of linoleic acid. At the same time, the CYP74C13_MT mostly possessed the HPL activity towards the 13(S)-hydroperoxides of linoleic and α-linolenic acids. To verify whether this dualistic behaviour of CYP74C13_MT is occasional or typical, we also examined five similar putative HPLs (CYP74C). These were CYP74C4_ST (Solanum tuberosum), CYP74C2 (Cucumis melo), CYP74C1_CS and CYP74C31 (both of Cucumis sativus), and CYP74C13_GM (Glycine max). All tested enzymes behaved predominantly as EAS toward 9-hydroperoxide of linoleic acid. Oxiranyl carbinols such as (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acids were the major EAS products. Besides, the CYP74C31 possessed an additional minor 9-AOS activity. The mutant forms of CYP74C13_MT, CYP74C1_CS, and CYP74C31 with substitutions at the catalytically essential domains, namely the "hydroperoxide-binding domain" (I-helix), or the SRS-1 domain near the N-terminus, showed strong AOS activity. These HPLs to AOSs conversions were observed for the first time. Until now a large part of CYP74C enzymes has been considered as 9/13-HPLs. Notwithstanding, these results show that all studied putative CYP74C HPLs are in fact the versatile HPL/EASs that can be effortlessly mutated into specific AOSs. Topics: Aldehyde-Lyases; Amino Acid Sequence; Biocatalysis; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Intramolecular Oxidoreductases; Kinetics; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Mutagenesis, Site-Directed; Mutant Proteins; Phylogeny; Plant Proteins; Plants; Recombinant Proteins; Sequence Alignment; Substrate Specificity | 2018 |
Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3.
Nonclassical P450s of CYP74 family control the secondary conversions of fatty acid hydroperoxides to bioactive oxylipins in plants. At least ten genes attributed to four novel CYP74 subfamilies have been revealed by the recent sequencing of the spikemoss Selaginella moellendorffii Hieron genome. Two of these genes CYP74M1 and CYP74M3 have been cloned in the present study. Both recombinant proteins CYP74M1 and CYP74M3 were active towards the 13(S)-hydroperoxides of α-linolenic and linoleic acids (13-HPOT and 13-HPOD, respectively) and exhibited the activity of divinyl ether synthase (DES). Products were analyzed by gas chromatography-mass spectrometry. Individual oxylipins were purified by HPLC and finally identified by their NMR data, including the (1)H NMR, 2D-COSY, HSQC and HMBC. CYP74M1 (SmDES1) specifically converted 13-HPOT to (11Z)-etherolenic acid and 13-HPOD to (11Z)-etheroleic acid. CYP74M3 (SmDES2) turned 13-HPOT and 13-HPOD mainly to etherolenic and etheroleic acids, respectively. CYP74M1 and CYP74M3 are the first DESs detected in non-flowering plants. The obtained results demonstrate the existence of the sophisticated oxylipin biosynthetic machinery in the oldest taxa of vascular plants. Topics: Amino Acid Sequence; Chromatography, High Pressure Liquid; Cloning, Molecular; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Kinetics; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Oxylipins; Plant Proteins; Recombinant Proteins; Selaginellaceae; Substrate Specificity; Vinyl Compounds | 2016 |
Purification of hydroperoxide lyase from green bell pepper (Capsicum annuum L.) fruits for the generation of C6-aldehydes in vitro.
The aim of this work was to compare the efficiency of different extracts of hydroperoxide lyase from green bell peppers in producing aldehydes: a crude extract, a chloroplastic fraction, and a purified enzyme were investigated. From a crude extract, the HPO lyase was purified by ion-exchange chromatography with a 22.3-fold increase in purification factor. Analysis by SDS-PAGE electrophoresis under denaturating conditions showed only one protein with a molecular weight of 55 kDa, whereas size-exclusion chromatography indicated a molecular weight of 170 kDa. A maximum of 7500 mg of aldehydes per g of protein was obtained with the purified enzyme within 20 min of bioconversion compared to 392 and 88 mg of aldehydes per g of protein within 50 and 60 min, respectively, for the chloroplast fraction and the crude extract. Topics: Aldehyde-Lyases; Aldehydes; Capsicum; Chloroplasts; Chromatography, Gel; Chromatography, Ion Exchange; Cytochrome P-450 Enzyme System; Electrophoresis, Polyacrylamide Gel; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Molecular Weight; Plant Extracts; Protein Denaturation | 2002 |
Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.
There is large interest in 4-hydroxy-(2E)-alkenals because of their cytotoxicity in mammals. However, the biosynthetic pathway for these compounds has not been elucidated yet. In plants, 4-hydroxy-(2E)-alkenals were supposed to be derived by the subsequent actions of lipoxygenase and a peroxygenase on (3Z)-alkenals. The presence of 9-hydroxy-12-oxo-(10E)-dodecenoic acid (9-hydroxy-traumatin) in incubations of 12-oxo-(9Z)-dodecenoic acid (traumatin) in the absence of lipoxygenase or peroxygenase, has prompted us to reinvestigate its mode of formation. We show here that in vitro 9-hydroxy-traumatin, 4-hydroxy-(2E)-hexenal and 4-hydroxy-(2E)-nonenal, are formed in a nonenzymatic process. Furthermore, a novel product derived from traumatin was observed and identified as 11-hydroxy-12-oxo-(9Z)-dodecenoic acid. The results obtained here strongly suggest that the 4-hydroxy-(2E)-alkenals, observed in crude extracts of plants, are mainly due to autoxidation of (3Z)-hexenal, (3Z)-nonenal and traumatin. This may have implications for the in vivo existence and previously proposed physiological significance of these products in plants. Topics: Aldehydes; Cell Extracts; Fatty Acids, Monounsaturated; Gas Chromatography-Mass Spectrometry; Glycine max; Hydrogen Peroxide; Hydrogen-Ion Concentration; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Lipoxygenase; Oxidation-Reduction; Plant Proteins; Recombinant Proteins | 2000 |
The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins.
Incubations of [1-14C]linoleic acid or [1-14C]-(9Z,11E, 13S)-13-hydropero xy-9,11-octadecadienoic acid (13-HPOD) with juice of garlic bulbs lead to the formation of one predominant labelled product, viz., the novel divinyl ether (9Z,11E, 1'E)-12-(1'-hexenyloxy)-9,11-dodecadienoic acid ('etheroleic acid'). With lesser efficiency [1-14C]alpha-linolenic acid or [1-14C](9Z,11E, 13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) are converted in this way into (9Z,11E,1'E,1'E,3'Z)-12-(1',3'-hexadienyloxy)-9,11- dodecadienoic acid ('etherolenic acid'). Thus, garlic bulbs possess the activity of a new 13-hydroperoxide-specific divinyl ether synthase. Topics: alpha-Linolenic Acid; Chromatography, High Pressure Liquid; Fatty Acids, Unsaturated; Garlic; Linoleic Acid; Linoleic Acids; Linolenic Acids; Lipid Peroxides; Lipoxygenase; Magnetic Resonance Spectroscopy; Plants, Medicinal | 1995 |