11-12-epoxy-5-8-14-eicosatrienoic-acid and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

11-12-epoxy-5-8-14-eicosatrienoic-acid has been researched along with 20-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 15 studies

Reviews

1 review(s) available for 11-12-epoxy-5-8-14-eicosatrienoic-acid and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

ArticleYear
[The physiological role of P450-derived arachidonic acid metabolites].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 1998, Volume: 112, Issue:1

    Arachidonic acid is metabolized to biologically active substances by three major enzyme systems including cyclooxygenases, lipoxygenases and cytochrome P450s. The third pathway, P450-dependent pathway, includes allylic oxidation, omega-hydroxylation, and epoxidation of arachidonic acid. Of these metabolites, the physiological role of 20-hydroxyeicosatetraenoic acid (20-HETE) produced by CYP4A isoforms has been extensively studied. 20-HETE affects ion transport, constricts blood vessels and participates in tubuloglomerular feed back. Increased production of 20-HETE is a major factor in elevating blood pressure in spontaneously hypertensive rats (SHR). We have found that CYP4A2 level in SHR is much higher than that of normotensive rat. Recently, factors of endothelial origin other than nitric oxide and prostaglandins were reported. Inhibitors of P450-dependent arachidonic acid metabolism greatly reduce the vasodilator effect and this factor is speculated to be an epoxide of arachidonic acid. We have isolated CYP2C23 from rat kidney and have found that it produces arachidonic acid epoxides. We have investigated changes in the CYP2C23 levels in physiological and pathophysiological conditions. Multiple pathways of arachidonic acid metabolism by P450 have been reported and the diverse properties of these metabolites and the wide distribution of the P450 system make them prime candidates for participation in regulatory mechanisms of the circulation and transporting epithelia.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Blood Pressure; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Hydroxyeicosatetraenoic Acids; Ion Transport; Mixed Function Oxygenases; Rats; Rats, Inbred SHR; Vasoconstriction

1998

Other Studies

14 other study(ies) available for 11-12-epoxy-5-8-14-eicosatrienoic-acid and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

ArticleYear
Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy.
    Journal of cardiovascular pharmacology, 2014, Volume: 63, Issue:2

    It has been previously shown that the cytochrome P450 (P450) modulator, fenofibrate, protects against cardiovascular diseases. P450 and their metabolites, epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) were found to play an important role in cardiovascular diseases. Therefore, it is important to examine whether fenofibrate would modulate the cardiac P450 and its associated arachidonic acid metabolites and whether this modulation protects against isoproterenol-induced cardiac hypertrophy. For this purpose, male Sprague-Dawley rats were treated with fenofibrate (30 mg·kg·d), isoproterenol (4.2 mg·kg·d), or the combination of both. The expression of hypertrophic markers and different P450s along with their metabolites was determined. Our results showed that fenofibrate significantly induced the cardiac P450 epoxygenases, such as CYP2B1, CYP2B2, CYP2C11, and CYP2C23, whereas it decreased the cardiac ω-hydroxylase, CYP4A3. Moreover, fenofibrate significantly increased the formation of 14,15-EET, 11,12-EET, and 8,9-EET, whereas it decreased the formation of 20-HETE in the heart. Furthermore, fenofibrate significantly decreased the hypertrophic markers and the increase in heart-to-body weight ratio induced by isoproterenol. This study demonstrates that fenofibrate alters the expression of cardiac P450s and their metabolites and partially protects against isoproterenol-induced cardiac hypertrophy, which further confirms the role of P450s, EETs, and 20-HETE in the development of cardiac hypertrophy.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Cardiomegaly; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Fenofibrate; Gene Expression Regulation, Enzymologic; Hydroxyeicosatetraenoic Acids; Hypolipidemic Agents; Isoproterenol; Male; Rats; Rats, Sprague-Dawley

2014
11,12-EET increases porto-sinusoidal resistance and may play a role in endothelial dysfunction of portal hypertension.
    Prostaglandins & other lipid mediators, 2011, Volume: 96, Issue:1-4

    CYP450-dependent epoxyeicosatrienoic acids (EETs) are potent arterial vasodilators, while 20-hydroxyeicosatatraenoic acid (20-HETE) is a vasoconstrictor. We evaluated their role in the control of portal circulation in normal and cirrhotic (CCl(4) induced) isolated perfused rat liver. Phenylephrine (PE) and endothelin-1 (ET-1) increased portal perfusion pressure, as did arachidonic acid (AA), 20-HETE, and 11,12-EET. Inhibition of 20-HETE with 12,12-dibromododecenoic acid (DBDD) did not affect basal pressure nor the responses to PE, ET-1, or AA. However, inhibition of epoxygenase with miconazole caused a significant reduction in the response to ET-1 and to AA, without affecting neither basal pressure nor the response to PE. Hepatic vein EETs concentration increased in response to ET-1, and was increased in cirrhotic, compared to control, livers. 20HETE levels were non-measurable. Miconazole decreased portal perfusion pressure in cirrhotic livers. In conclusion, 20HETE and EETs increase portal resistance; EETs, but not 20-HETE, mediate in part the pressure response to ET-1 in the portal circulation and may be involved in pathophysiology of portal hypertension.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Carbon Tetrachloride; Cytochrome P-450 Enzyme System; Endothelin-1; Hepatic Veins; Hydroxyeicosatetraenoic Acids; Hypertension, Portal; Infusion Pumps; Liver; Liver Cirrhosis, Experimental; Male; Miconazole; Organ Culture Techniques; Oxidoreductases; Phenylephrine; Portal Pressure; Rats; Rats, Sprague-Dawley; Vascular Resistance; Vasoconstriction; Vasodilation

2011
Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats.
    Clinical science (London, England : 1979), 2010, Feb-23, Volume: 118, Issue:10

    Recent studies have shown that the renal CYP450 (cytochrome P450) metabolites of AA (arachidonic acid), the vasoconstrictor 20-HETE (20-hydroxyeicosatetraenoic acid) and the vasodilator EETs (epoxyeicosatrienoic acids), play an important role in the pathophysiology of AngII (angiotensin II)-dependent forms of hypertension and the associated target organ damage. The present studies were performed in Ren-2 renin transgenic rats (TGR) to evaluate the effects of chronic selective inhibition of 20-HETE formation or elevation of the level of EETs, alone or in combination, on the course of hypertension and hypertension-associated end-organ damage. Both young (30 days of age) prehypertensive TGR and adult (190 days of age) TGR with established hypertension were examined. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. The rats were treated with N-methylsulfonyl-12,12-dibromododec-11-enamide to inhibit 20-HETE formation and/or with N-cyclohexyl-N-dodecyl urea to inhibit soluble epoxide hydrolase and prevent degradation of EETs. Inhibition in TGR of 20-HETE formation combined with enhanced bioavailability of EETs attenuated the development of hypertension, cardiac hypertrophy, proteinuria, glomerular hypertrophy and sclerosis as well as renal tubulointerstitial injury. This was also associated with attenuation of the responsiveness of the systemic and renal vascular beds to AngII without modifying their responses to noradrenaline (norepinephrine). Our findings suggest that altered production and/or action of 20-HETE and EETs plays a permissive role in the development of hypertension and hypertension-associated end-organ damage in this model of AngII-dependent hypertension. This information provides a basis for a search for new therapeutic approaches for the treatment of hypertension.

    Topics: 8,11,14-Eicosatrienoic Acid; Amides; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Drug Evaluation, Preclinical; Hydroxyeicosatetraenoic Acids; Hypertension; Male; Multiple Organ Failure; Norepinephrine; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Renal Circulation; Sulfones; Vasoconstrictor Agents

2010
Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease.
    Hypertension (Dallas, Tex. : 1979), 2008, Volume: 51, Issue:5

    The aim of the present cross-sectional study was to investigate whether activation of the renin-angiotensin system in renovascular disease affects the cytochrome P450 omega/omega-1 hydroxylase (20-hydroxyeicosatetraenoic acid [20-HETE]) and epoxygenase (epoxyeicosatrienoic acids [EETs]) pathways of arachidonic acid metabolism in vivo, each of which interacts with angiotensin II. Plasma concentration and urinary excretion of 20-HETE and EETs and their metabolites, dihydroxyeicosatrienoic acids, were measured in urine and plasma by mass spectrometry in 10 subjects with renovascular disease, 10 with essential hypertension, and 10 healthy normotensive subjects (control subjects), pair-matched for gender and age. Vascular and renal function were evaluated in all of the subjects. Plasma 20-HETE was highest in subjects with renovascular disease (median: 1.20 ng/mL; range: 0.42 to 1.92 ng/mL) compared with subjects with essential hypertension (median: 0.90 ng/mL; range: 0.40 to 2.17 ng/mL) and control subjects (median: 0.45 ng/mL; range: 0.14 to 1.70 ng/mL; P<0.05). Plasma 20-HETE significantly correlated with plasma renin activity in renovascular disease (r(s)=0.67; n=10; P<0.05). The urinary excretion of 20-HETE was significantly lower in subjects with renovascular disease (median: 12.9 microg/g of creatinine; range: 4.4 to 24.9 microg/g of creatinine) than in control subjects (median: 31.0 microg/g of creatinine; range: 11.9 to 102.8 microg/g of creatinine; P<0.01) and essential hypertensive subjects (median: 35.9 microg/g of creatinine; range: 14.0 to 72.5 microg/g of creatinine; P<0.05). Total plasma EETs were lowest, as was the ratio of plasma EETs to plasma dihydroxyeicosatrienoic acids, an index of epoxide hydrolase activity, in renovascular disease (ratio: 2.4; range: 1.2 to 6.1) compared with essential hypertension (ratio: 3.4; range: 1.5 to 5.6) and control subjects (ratio: 6.8; range: 1.4 to 18.8; P<0.01). In conclusion, circulating levels of 20-HETE are increased and those of EETs are decreased in renovascular disease, whereas the urinary excretion of 20-HETE is reduced. Altered cytochrome P450 arachidonic acid metabolism may contribute to the vascular and tubular abnormalities of renovascular disease.

    Topics: 8,11,14-Eicosatrienoic Acid; Adult; Aged; Aged, 80 and over; Arachidonic Acid; Arachidonic Acids; Case-Control Studies; Creatinine; Cross-Sectional Studies; Cytochrome P-450 Enzyme System; Humans; Hydroxyeicosatetraenoic Acids; Hypertension; Hypertension, Renovascular; Male; Middle Aged; Renal Artery Obstruction

2008
Anandamide metabolism by human liver and kidney microsomal cytochrome p450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 321, Issue:2

    The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play important roles in blood pressure regulation and inflammation. To determine whether anandamide can also be oxidized by P450s, its metabolism by human liver and kidney microsomes was investigated. The kidney microsomes metabolized anandamide to a single mono-oxygenated product, which was identified as 20-HETE-ethanolamide (EA). Human liver microsomal incubations with anandamide also produced 20-HETE-EA in addition to 5,6-, 8,9-, 11-12, and 14,15-EET-EA. The EET-EAs produced by the liver microsomal P450s were converted to their corresponding dihydroxy derivatives by microsomal epoxide hydrolase. P450 4F2 was identified as the isoform that is most probably responsible for the formation of 20-HETE-EA in both human kidney and human liver, with an apparent Km of 0.7 microM. The apparent Km values of the human liver microsomes for the formation of the EET-EAs were between 4 and 5 microM, and P450 3A4 was identified as the primary P450 in the liver responsible for epoxidation of anandamide. The in vivo formation and biological relevance of the P450-derived HETE and EET ethanolamides remains to be determined.

    Topics: 8,11,14-Eicosatrienoic Acid; Arachidonic Acids; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Endocannabinoids; Epoxy Compounds; Humans; Hydrogen-Ion Concentration; Hydroxyeicosatetraenoic Acids; Kidney; Kinetics; Microsomes, Liver; Polyunsaturated Alkamides; Spectrometry, Mass, Electrospray Ionization

2007
Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha.
    Drug metabolism and disposition: the biological fate of chemicals, 2007, Volume: 35, Issue:7

    Cytochrome P450 (P450) eicosanoids regulate vascular tone, renal tubular transport, cellular proliferation, and inflammation. Both the CYP4A omega-hydroxylases, which catalyze 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and soluble epoxide hydrolase (sEH), which catalyzes epoxyeicosatrienoic acid (EET) degradation to the dihydroxyeicosatrienoic acids (DHETs), are induced upon activation of peroxisome proliferator-activated receptor alpha (PPARalpha) by fatty acids and fibrates. In contrast, the CYP2C epoxygenases, which are responsible for EET formation, are repressed after fibrate treatment. We show here that P450 eicosanoids can bind to and activate PPARalpha and result in the modulation of PPARalpha target gene expression. In transactivation assays, 14,15-DHET, 11,2-EET, and 20-HETE were potent activators of PPARalpha. Gel shift assays showed that EETs, DHETs, and 20-HETE induced PPARalpha-specific binding to its cognate response element. Expression of apolipoprotein A-I was decreased 70% by 20-HETE, whereas apolipoprotein A-II expression was increased up to 3-fold by 11,12-EET, 14,15-DHET, and 20-HETE. In addition, P450 eicosanoids induced CYP4A1, sEH, and CYP2C11 expression, suggesting that they can regulate their own levels. Given that P450 eicosanoids have multiple cardiovascular effects, pharmacological modulation of their formation and/or degradation may yield therapeutic benefits.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Apolipoprotein A-I; Apolipoprotein A-II; Aryl Hydrocarbon Hydroxylases; Cell Line, Tumor; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 2; Cytochrome P450 Family 4; Dose-Response Relationship, Drug; Eicosanoids; Epoxide Hydrolases; Gene Expression Regulation, Enzymologic; Hepatocytes; Humans; Hydroxyeicosatetraenoic Acids; Peroxisome Proliferators; PPAR alpha; PPAR gamma; Pyrimidines; Rats; Rats, Sprague-Dawley; Response Elements; Retinoid X Receptors; RNA, Messenger; Steroid 16-alpha-Hydroxylase; Transcriptional Activation; Transfection

2007
Cytochrome P450 4A isoform inhibitory profile of N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016), a selective inhibitor of 20-HETE synthesis.
    Biological & pharmaceutical bulletin, 2005, Volume: 28, Issue:9

    We examined the effect of N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine) (HET0016), an inhibitor of 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) synthesis on the omega-hydroxylation and epoxidation of arachidonic acid (AA) catalyzed by recombinant cytochrome P450 4A1 (CYP4A1), CYP4A2 and CYP4A3, and characterized the enzyme inhibitory profile of HET0016. The IC50 values of HET0016 for recombinant CYP4A1-, CYP4A2- and CYP4A3-catalyzed 20-HETE synthesis averaged 17.7 nM, 12.1 nM and 20.6 nM, respectively. The IC50 value for production of 11,12-epoxy-5,8,14-eicosatrienoic acid (11,12-EET) by CYP4A2 and 4A3 averaged 12.7 nM and 22.0 nM, respectively. The IC50 value for CYP2C11 activity was 611 nM which was much greater than that for CYP4As. The initial velocity study showed the Ki value of HET0016 for CYP4A1 was 19.5 nM and a plot of Vmax versus amount of recombinant CYP4A1 added shows HET0016 is an irreversible non-competitive inhibitor. These results indicate that HET0016 is a selective, non-competitive and irreversible inhibitor of CYP4A.

    Topics: 8,11,14-Eicosatrienoic Acid; Amidines; Animals; Arachidonic Acid; Cell Membrane; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 4; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Kinetics; Oxidation-Reduction; Rats

2005
Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase.
    Biochemistry, 2003, Oct-14, Volume: 42, Issue:40

    Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Binding, Competitive; Carrier Proteins; Epoxide Hydrolases; Fatty Acid-Binding Protein 7; Fatty Acid-Binding Proteins; Hydroxyeicosatetraenoic Acids; Kinetics; Ligands; Linoleic Acid; Models, Chemical; Myocardium; Neoplasm Proteins; Nerve Tissue Proteins; Oleic Acid; Rats; Recombinant Proteins; Solubility; Water

2003
Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells.
    American journal of physiology. Heart and circulatory physiology, 2002, Volume: 282, Issue:4

    We recently reported that cADP-ribose (cADPR) and ADP-ribose (ADPR) play an important role in the regulation of the Ca(2+)-activated K(+) (K(Ca)) channel activity in coronary arterial smooth muscle cells (CASMCs). The present study determined whether these novel signaling nucleotides participate in 11,12-epoxyeicosatrienoic acid (11,12-EET)-induced activation of the K(Ca) channels in CASMCs. HPLC analysis has shown that 11,12-EET increased the production of ADPR but not the formation of cADPR. The increase in ADPR production was due to activation of NAD glycohydrolase as measured by a conversion rate of NAD into ADPR. The maximal conversion rate of NAD into ADPR in coronary homogenate was increased from 2.5 +/- 0.2 to 3.4 +/- 0.3 nmol*(-1) *mg protein(-1) by 11,12-EET. The regioisomers of 8,9-EET, 11,12-EET, and 14,15-EET also significantly increased ADPR production from NAD. Western blot analysis and immunoprecipitation demonstrated the presence of NAD glycohydrolase, which mediated 11,12-EET-activated production of ADPR. In cell-attached patches, 11,12-EET (100 nM) increases K(Ca) channel activity by 5.6-fold. The NAD glycohydrolase inhibitor cibacron blue 3GA (3GA, 100 microM) significantly attenuated 11,12-EET-induced increase in the K(Ca) channel activity in CASMCs. However, 3GA had no effect on the K(Ca) channels activity in inside-out patches. 11,12-EET produced a concentration-dependent relaxation of precontracted coronary arteries. This 11,12-EET-induced vasodilation was substantially attenuated by 3GA (30 microM) with maximal inhibition of 57%. These results indicate that 11,12-EET stimulates the production of ADPR and that intracellular ADPR is an important signaling molecule mediating 11,12-EET-induced activation of the K(Ca) channels in CASMCs and consequently results in vasodilation of coronary artery.

    Topics: 8,11,14-Eicosatrienoic Acid; Adenosine Diphosphate Ribose; Animals; Arachidonic Acid; Arterioles; Cattle; Coronary Vessels; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Kinetics; Muscle, Smooth, Vascular; Nitroprusside; Patch-Clamp Techniques; Potassium Channels, Calcium-Activated; Vasodilation

2002
Kinetic profile of the rat CYP4A isoforms: arachidonic acid metabolism and isoform-specific inhibitors.
    The American journal of physiology, 1999, Volume: 276, Issue:6

    20-Hydroxyeicosatetraenoic acid (HETE), the cytochrome P-450 (CYP) 4A omega-hydroxylation product of arachidonic acid, has potent biological effects on renal tubular and vascular functions and on the control of arterial pressure. We have expressed high levels of the rat CYP4A1, -4A2, -4A3, and -4A8 cDNAs, using baculovirus and Sf 9 insect cells. Arachidonic acid omega- and omega-1-hydroxylations were catalyzed by three of the CYP4A isoforms; the highest catalytic efficiency of 947 nM-1. min-1 for CYP4A1 was followed by 72 and 22 nM-1. min-1 for CYP4A2 and CYP4A3, respectively. CYP4A2 and CYP4A3 exhibited an additional arachidonate 11,12-epoxidation activity, whereas CYP4A1 operated solely as an omega-hydroxylase. CYP4A8 did not catalyze arachidonic or linoleic acid but did have a detectable lauric acid omega-hydroxylation activity. The inhibitory activity of various acetylenic and olefinic fatty acid analogs revealed differences and indicated isoform-specific inhibition. These studies suggest that CYP4A1, despite its low expression in extrahepatic tissues, may constitute the major source of 20-HETE synthesis. Moreover, the ability of CYP4A2 and -4A3 to catalyze the formation of two opposing biologically active metabolites, 20-HETE and 11, 12-epoxyeicosatrienoic acid, may be of great significance to the regulation of vascular tone.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Catalysis; Cell Line; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Fatty Acids; Female; Hydroxyeicosatetraenoic Acids; Hydroxylation; Insecta; Kinetics; Male; Mixed Function Oxygenases; Oxidation-Reduction; Protein Isoforms; Rats; Recombinant Proteins

1999
Cloning, sequencing, and cDNA-directed expression of the rat renal CYP4A2: arachidonic acid omega-hydroxylation and 11,12-epoxidation by CYP4A2 protein.
    Archives of biochemistry and biophysics, 1996, Dec-15, Volume: 336, Issue:2

    20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), the omega-hydroxylation product of arachidonic acid, is the major metabolite produced in the kidney. It has potent biological effects on renal tubular and vascular functions and on the long-term control of arterial pressure. The synthesis of 20-HETE is catalyzed by enzymes of the CYP4A family, among which CYP4A2 is the most abundant isozyme expressed in the kidneys of rats. We have cloned and sequenced the CYP4A2 cDNA from the kidney of Lewis-Wistar rats and directed its expression using baculovirus and Sf9 insect cells. A high level of expression of CYP4A2 was evident by Northern, Western, and spectral analyses revealing a P450 content of 0.3 nmol/mg microsomal protein. To study CYP4A2-catalyzed arachidonic acid omega-hydroxylation, Sf9 cells were coinfected with CYP4A2 and NADPH cytochrome P450 oxidoreductase (OR) recombinant viruses. CYP4A2/OR membranes metabolized lauric acid at a high rate (7 and 5.5 nmol/min/nmol P450 in the presence and absence of b5, respectively). However, arachidonic acid omega-hydroxylase activity was barely detectable. When purified OR was added to the membranes expressing CYP4A2 protein, a concentration-dependent production of 20-HETE was observed. Maximal synthesis of 20-HETE of 0.89 nmol/min/nmol P450 was achieved at OR:CYP4A2 ratio of 14:1. The omega-hydroxylation of arachidonic acid was dependent on the presence of b5. Furthermore, increasing OR concentrations yielded additional arachidonic acid metabolite identified by GC/MS as 11,12-EET. Microsomes prepared from isolated renal microvessels selectively expressed CYP4A2 protein and readily metabolized arachidonic acid to two major metabolites, 20-HETE and 11,12-DHET, the hydrolytic metabolite of 11, 12-EET. It is suggested that CYP4A2 functions as the renal microvessel arachidonate omega-hydroxylase and that it can also catalyze the 11,12-epoxidation of arachidonic acid.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Baculoviridae; Capillaries; Catalysis; Cell Line; Cloning, Molecular; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; DNA, Complementary; Gas Chromatography-Mass Spectrometry; Hydroxyeicosatetraenoic Acids; Hydroxylation; Kidney; Lauric Acids; Microsomes; Mixed Function Oxygenases; NADH, NADPH Oxidoreductases; NADPH-Ferrihemoprotein Reductase; Rats; Rats, Inbred Lew; Rats, Sprague-Dawley; Spodoptera

1996
Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats.
    The American journal of physiology, 1994, Volume: 267, Issue:2 Pt 2

    The renal metabolism of arachidonic acid (AA) was compared in male and female prehypertensive Dahl salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) rats maintained on a low- (0.3%) sodium chloride diet. Renal cortical microsomes incubated with AA produced 20-hydroxyeicosatetraenoic acid (20-HETE), 14,15- and 11,12-epoxyeicosatrienoic acids, and a new metabolite of AA, 11,12-epoxy-20-hydroxyeicosatrienoic acid. The production of 20-HETE was similar in cortical microsomes of female SS/Jr and SR/Jr rats maintained on a low-salt diet (72 +/- 5 vs. 66 +/- 3 pmol.min-1.mg protein-1); however, the formation of epoxygenase metabolites was significantly less in SS/Jr than in SR/Jr rats (45 +/- 2 vs. 70 +/- 3 pmol.min-1.mg protein-1). Outer medullary microsomes produced primarily 20-HETE, and the formation of this compound was significantly lower in SS/Jr than in SR/Jr female rats fed a low-salt diet (8 +/- 2 vs. 18 +/- 3 pmol.min-1.mg protein-1). Renal papillary microsomes produced prostaglandin E2 and F2 alpha, and the formation of these compounds was similar in female SS/Jr and SR/Jr rats fed a low-salt diet. Similar differences in the metabolism of AA by P-450 were observed in microsomes prepared from the renal cortex and outer medulla of male SS/Jr and SR/Jr rats. These results indicate that the renal metabolism of AA by P-450 is altered in prehypertensive Dahl SS/Jr rats; however, the functional significance of this system in resetting renal function and in the development of hypertension in this model remains to be established.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Drug Resistance; Female; Gas Chromatography-Mass Spectrometry; Hydroxyeicosatetraenoic Acids; Hypertension; Kidney; Male; Prostaglandins; Rats; Rats, Inbred Strains; Sodium Chloride

1994
Cytochrome P-450 inhibitors alter afferent arteriolar responses to elevations in pressure.
    The American journal of physiology, 1994, Volume: 266, Issue:5 Pt 2

    The present study evaluated the effects of cytochrome P-450 inhibitors on the response of the renal microvasculature to changes in renal perfusion pressure and on autoregulation of glomerular capillary pressure using the rat juxtamedullary nephron microvascular preparation perfused in vitro with a cell-free perfusate containing 5% albumin. The basal diameters of the proximal and distal afferent arterioles averaged 28 +/- 1 (n = 32) and 18 +/- 1 micron (n = 23), respectively, at a control perfusion pressure of 80 mmHg. The diameters of these vessels decreased by 8% when perfusion pressure was elevated from 80 to 160 mmHg. After addition of cytochrome P-450 inhibitors (either 17-octadecynoic acid, 20 microM; 7-ethoxyresorufin, 10 microM; or miconazole, 20 microM) to the perfusate, the diameters of the proximal and distal afferent arterioles increased by 6% in response to the same elevation in perfusion pressure. Control glomerular capillary pressure averaged 43 +/- 1 mmHg (n = 32) at a renal perfusion pressure of 80 mmHg and increased by only 9 +/- 1 mmHg when perfusion pressure was elevated to 160 mmHg. Autoregulation of glomerular capillary pressure was impaired after addition of the cytochrome P-450 inhibitors, and it increased by 18 +/- 2 mmHg when perfusion pressure was varied over the same range. These results indicate that cytochrome P-450 inhibitors attenuate the vasoconstrictor response of afferent arterioles to elevations in renal perfusion pressure and impair autoregulation of glomerular capillary pressure, suggesting a possible role for cytochrome P-450 metabolites of arachidonic acid in these responses.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arterioles; Cytochrome P-450 Enzyme Inhibitors; Fatty Acids, Unsaturated; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Kidney; Kidney Cortex; Miconazole; Microsomes; Muscle, Smooth, Vascular; Oxazines; Perfusion; Rats; Rats, Sprague-Dawley; Renal Circulation

1994
Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites.
    The Journal of pharmacology and experimental therapeutics, 1992, Volume: 260, Issue:1

    The renovascular effects of cytochrome P450-dependent arachidonic acid (P450-AA) metabolites synthesized by rat and rabbit kidneys were studied in the rabbit isolated kidney under conditions of constant flow and examined for their dependency on cyclooxygenase relative to their expression of vasoactivity. Kidneys were perfused with Krebs-Henseleit solution, and perfusion pressure was raised to levels of 90 to 110 mm Hg with the addition of 2 to 3 microM phenylephrine to the perfusate. Close arterial injection of 1 to 20 micrograms of 5,6-, 8,9- and 11,12-epoxyeicosatrienoic acid (EET) dose-dependently decreased perfusion pressure. The 5,6-EET was the most potent and the only epoxide dependent on cyclooxygenase for expression of vasoactivity, being inhibited by indomethacin (2.8 microM). In contrast, 14,15-EET resulted in dose-dependent increases in perfusion pressure. The vasodilator effects of the omega- and omega-1 oxidation products, 20-hydroxyeicosatetraenoic acid (HETE) and the stereoisomers of 19-HETE, were also inhibited by indomethacin. Furthermore, the renal vasodilator responses to 5,6-EET were not inhibited by either superoxide dismutase (10 U) or catalase (40 U) and, therefore, were unrelated to the formation of oxygen radicals generated during transformation of the epoxide by cyclooxygenase. As 5,6-EET and 19- and 20-HETE are synthesized by the renal tubules and can affect movement of salt and water, expression of vasoactivity by P450-dependent arachidonic acid metabolites, and after release from a nephron segment, may represent a mechanism that couples altered renal tubular function to appropriate changes in local blood flow.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arachidonic Acids; Blood Pressure; Cyclooxygenase Inhibitors; Cytochrome P-450 Enzyme System; Eicosanoids; Free Radicals; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Kidney; Male; Prostaglandin-Endoperoxide Synthases; Rabbits; Renal Circulation; Vascular Resistance

1992