11-12-dihydroxyeicosatrienoic-acid and 8-9-epoxyeicosatrienoic-acid

11-12-dihydroxyeicosatrienoic-acid has been researched along with 8-9-epoxyeicosatrienoic-acid* in 2 studies

Other Studies

2 other study(ies) available for 11-12-dihydroxyeicosatrienoic-acid and 8-9-epoxyeicosatrienoic-acid

ArticleYear
Beyond detoxification: a role for mouse mEH in the hepatic metabolism of endogenous lipids.
    Archives of toxicology, 2017, Volume: 91, Issue:11

    Microsomal and soluble epoxide hydrolase (mEH and sEH) fulfill apparently distinct roles: Whereas mEH detoxifies xenobiotics, sEH hydrolyzes fatty acid (FA) signaling molecules and is thus implicated in a variety of physiological functions. These epoxy FAs comprise epoxyeicosatrienoic acids (EETs) and epoxy-octadecenoic acids (EpOMEs), which are formed by CYP epoxygenases from arachidonic acid (AA) and linoleic acid, respectively, and then are hydrolyzed to their respective diols, the so-called DHETs and DiHOMEs. Although EETs and EpOMEs are also substrates for mEH, its role in lipid signaling is considered minor due to lower abundance and activity relative to sEH. Surprisingly, we found that in plasma from mEH KO mice, hydrolysis rates for 8,9-EET and 9,10-EpOME were reduced by 50% compared to WT plasma. This strongly suggests that mEH contributes substantially to the turnover of these FA epoxides-despite kinetic parameters being in favor of sEH. Given the crucial role of liver in controlling plasma diol levels, we next studied the capacity of sEH and mEH KO liver microsomes to synthesize DHETs with varying concentrations of AA (1-30 μM) and NADPH. mEH-generated DHET levels were similar to the ones generated by sEH, when AA concentrations were low (1 μM) or epoxygenase activity was curbed by modulating NADPH. With increasing AA concentrations sEH became more dominant and with 30 μM AA produced twice the level of DHETs compared to mEH. Immunohistochemistry of C57BL/6 liver slices further revealed that mEH expression was more widespread than sEH expression. mEH immunoreactivity was detected in hepatocytes, Kupffer cells, endothelial cells, and bile duct epithelial cells, while sEH immunoreactivity was confined to hepatocytes and bile duct epithelial cells. Finally, transcriptome analysis of WT, mEH KO, and sEH KO liver was carried out to discern transcriptional changes associated with the loss of EH genes along the CYP-epoxygenase-EH axis. We found several prominent dysregulations occurring in a parallel manner in both KO livers: (a) gene expression of Ephx1 (encoding for mEH protein) was increased 1.35-fold in sEH KO, while expression of Ephx2 (encoding for sEH protein) was increased 1.4-fold in mEH KO liver; (b) Cyp2c genes, encoding for the predominant epoxygenases in mouse liver, were mostly dysregulated in the same manner in both sEH and mEH KO mice, showing that loss of either EH has a similar impact. Taken together, mEH appears to play a leading rol

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Epoxide Hydrolases; Epoxy Compounds; Gene Expression; Inactivation, Metabolic; Lipid Metabolism; Liver; Male; Mice, Inbred C57BL; Mice, Knockout; Microsomes, Liver; Oleic Acids; Oxylipins

2017
Inhibition of ATP binding to the carboxyl terminus of Kir6.2 by epoxyeicosatrienoic acids.
    Biochimica et biophysica acta, 2006, Volume: 1761, Issue:9

    Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel.

    Topics: 8,11,14-Eicosatrienoic Acid; Adenosine Triphosphate; Animals; ATP-Binding Cassette Transporters; Cell Line; Glutathione Transferase; Humans; Ion Channel Gating; Mice; Potassium Channels, Inwardly Rectifying; Protein Binding; Receptors, Drug; Recombinant Fusion Proteins; Sulfonylurea Receptors

2006