10-formyltetrahydrofolate and 5-10-methenyltetrahydrofolate

10-formyltetrahydrofolate has been researched along with 5-10-methenyltetrahydrofolate* in 3 studies

Other Studies

3 other study(ies) available for 10-formyltetrahydrofolate and 5-10-methenyltetrahydrofolate

ArticleYear
5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves.
    The Journal of biological chemistry, 2005, Jul-15, Volume: 280, Issue:28

    5-Formyltetrahydrofolate (5-CHO-THF) is formed via a second catalytic activity of serine hydroxymethyltransferase (SHMT) and strongly inhibits SHMT and other folate-dependent enzymes in vitro. The only enzyme known to metabolize 5-CHO-THF is 5-CHO-THF cycloligase (5-FCL), which catalyzes its conversion to 5,10-methenyltetrahydrofolate. Because 5-FCL is mitochondrial in plants and mitochondrial SHMT is central to photorespiration, we examined the impact of an insertional mutation in the Arabidopsis 5-FCL gene (At5g13050) under photorespiratory (30 and 370 micromol of CO2 mol(-1)) and non-photorespiratory (3200 micromol of CO2 mol(-1)) conditions. The mutation had only mild visible effects at 370 micromol of CO2 mol(-1), reducing growth rate by approximately 20% and delaying flowering by 1 week. However, the mutation doubled leaf 5-CHO-THF level under all conditions and, under photorespiratory conditions, quadrupled the pool of 10-formyl-/5,10-methenyltetrahydrofolates (which could not be distinguished analytically). At 370 micromol of CO2 mol(-1), the mitochondrial 5-CHO-THF pool was 8-fold larger in the mutant and contained most of the 5-CHO-THF in the leaf. In contrast, the buildup of 10-formyl-/5,10-methenyltetrahydrofolates was extramitochondrial. In photorespiratory conditions, leaf glycine levels were up to 46-fold higher in the mutant than in the wild type. Furthermore, when leaves were supplied with 5-CHO-THF, glycine accumulated in both wild type and mutant. These data establish that 5-CHO-THF can inhibit SHMT in vivo and thereby influence glycine pool size. However, the near-normal growth of the mutant shows that even exceptionally high 5-CHO-THF levels do not much affect fluxes through SHMT or any other folate-dependent reaction, i.e. that 5-CHO-THF is well tolerated in plants.

    Topics: Arabidopsis; Carbon Dioxide; Carbon-Nitrogen Ligases; Catalysis; DNA, Bacterial; Flowers; Formate-Tetrahydrofolate Ligase; Formyltetrahydrofolates; Glycine; Glycine Hydroxymethyltransferase; Hydrolysis; Leucovorin; Mitochondria; Models, Biological; Models, Chemical; Models, Genetic; Mutagenesis, Site-Directed; Mutation; Phenotype; Photosynthesis; Plant Leaves; Protein Isoforms; RNA; Serine; Temperature; Tetrahydrofolates; Time Factors

2005
Synthesis and interconversion of reduced folylpolyglutamates.
    Methods in enzymology, 1997, Volume: 281

    Topics: Leucovorin; Oxidation-Reduction; Pteroylpolyglutamic Acids; Stereoisomerism; Tetrahydrofolates

1997
Factors that influence the therapeutic activity of 5-fluorouracil [6RS]leucovorin combinations in colon adenocarcinoma xenografts.
    Cancer chemotherapy and pharmacology, 1992, Volume: 30, Issue:6

    The therapeutic activity of FUra alone or combined with [6RS]LV doses ranging from 50 to 1,000 mg/m2 was examined in eight colon adenocarcinoma xenografts, of which five were established from adult neoplasms (HxELC2, HxGC3, HxVRC5, HxHC1, and HxGC3/c1TK-c3 selected for TK deficiency) and three were derived from adolescent tumors (HxSJC3A, HxSJC3B, and HxSJC2). The growth-inhibitory effects of FUra were potentiated by higher doses of [6RS]LV (500-1,000 mg/m2) in three lines (HxGC3/c1TK-c3, HxSJC3A, and HxSJC3B) and by a low dose of [6RS]LV in only one tumor (HxVRC5). Expansion of pools of CH2-H4PteGlun+H4PteGlun (greater than or equal to 2.4-fold) in response to higher doses of [6RS]LV was obtained in all lines except HxHC1. Metabolism of [6RS]LV was high in HxVRC5, with high levels of 5-CH3-H4PteGlu being detected, but not in HxHC1, in which levels of 5-CH3-H4PteGlu and CH = H4PteGlu+10-CHO-H4PteGlu remained relatively low. In the adolescent tumors, levels of CH = H4PteGlu+10-CHO-H4PteGlu were consistently higher than those of 5-CH3-H4PteGlu following [6RS]LV administration, and in HxSJC3A, in which pools of CH2-H4PteGlun+H4PteGlun were significantly expanded, 5-CH3-H4PteGlu concentrations were lower than those observed in the other two lines. The sensitivity of tumors to FUra +/- [6RS]LV and the characteristics of [6S]LV metabolism did not correlate with the activity of CH = H4PteGlu synthetase, the enzyme responsible for the initial cellular metabolism of [6S]LV to CH = H4PteGlu. Thus, no single metabolic phenotype correlated with the [6RS]LV-induced expansion of CH2-H4PteGlun+H4PteGlun pools. Potentiation of the therapeutic efficacy of FUra by [6RS]LV was observed in HxGC3/c1TK-c3 xenografts but not in parent HxGC3 tumors, demonstrating the influence of dThd salvage capability in the response to FUra-[6RS]LV combinations. Plasma dThd concentrations in CBA/CaJ mice were high (1.1 microM). The present data therefore demonstrate the importance of (1) higher doses of [6RS]LV, (2) expansion of pools of CH2-H4PteGlun+H4PteGlun, and (3) dThd salvage capability in potentiation of the therapeutic efficacy of FUra in colon adenocarcinoma xenografts. The plasma levels of FUra achieved in mice are presented.

    Topics: Adenocarcinoma; Animals; Antineoplastic Combined Chemotherapy Protocols; Colonic Neoplasms; Fluorouracil; Humans; Leucovorin; Mice; Mice, Inbred CBA; Neoplasm Transplantation; Tetrahydrofolates

1992