1-palmitoyl-2-oleoylphosphatidylethanolamine and 6-carboxyfluorescein

1-palmitoyl-2-oleoylphosphatidylethanolamine has been researched along with 6-carboxyfluorescein* in 3 studies

Other Studies

3 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylethanolamine and 6-carboxyfluorescein

ArticleYear
Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2018, Volume: 133

    This study investigates the impact of the chemical nature of lipids and additive on the formulation and properties of pH sensitive liposomes. The objective is to understand the respective role of the formulation parameters on the liposome properties in order to optimize the conditions for efficient encapsulation of doxorubicin (DOX). These liposomes should be stable at physiological pH, and disrupt in slightly acidic media such as the tumor microenvironment to release their DOX load. The major challenge for encapsulating DOX in pH sensitive liposomes lies in the fact that this drug is soluble at low pH (when the pH-sensitive liposomes are not stable), but the DOX aqueous solubility decreases in the pH conditions corresponding to the stability of the pH-sensitive liposomes. The study of pH-sensitivity of liposomes was conducted using carboxyfluorescein (CF) encapsulated in high concentration, i.e. quenched, and following the dye dequenching as sensor of the liposome integrity. We studied the impact of (i) the chemical nature of lipids (dioleoyl phosphatidyl ethanolamine (DOPE), palmitoyl-oleoyl phosphatidyl ethanolamine (POPE) and dimyristoyl phosphatidyl ethanolamine (DMPE)) and (ii) the lipid/stabilizing agent ratio (alpha-tocopheryl succinate), on the pH sensitivity of the liposomes. Optimized liposome formulations were then selected for the encapsulation of DOX by an active loading procedure, i.e. driven by a difference in pH inside and outside the liposomes. Numerous experimental conditions were explored, in function of the pH gradient and liposome composition, which allowed identifying critical parameters for the efficient DOX encapsulation in pH-sensitive liposomes.

    Topics: alpha-Tocopherol; Chemistry, Pharmaceutical; Doxorubicin; Fluoresceins; Hydrogen-Ion Concentration; Lipids; Liposomes; Phosphatidylethanolamines; Solubility; Tumor Microenvironment

2018
Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa.
    Journal of colloid and interface science, 2010, Jan-15, Volume: 341, Issue:2

    Pseudomonas aeruginosa, when cultured under the appropriate conditions, secretes rhamnolipids to the external medium. These glycolipids constitute one of the most interesting classes of biosurfactants so far. A dirhamnolipid fraction was isolated and purified from the crude biosurfactant, and its action on model and biological membranes was studied. Dirhamnolipid induced leakage of internal contents, as measured by the release of carboxyfluorescein, in phosphatidylcholine unilamellar vesicles, at concentrations below its CMC. Membrane solubilization was not observed within this concentration range. The presence of inverted cone-shaped lipids in the membrane, namely lysophosphatidylcholine, accelerated leakage, whereas cone-shaped lipids, like phosphatidylethanolamine, decreased leakage rate. Increasing concentrations of cholesterol protected the membrane against dirhamnolipid-induced leakage, which was totally abolished by the presence of 50 mol% of the sterol. Dirhamnolipid caused hemolysis of human erythrocytes through a lytic mechanism, as shown by the similar rates of K(+) and hemoglobin leakage, and by the absence of effect of osmotic protectants. Scanning electron microscopy showed that the addition of the biosurfactant changed the usual disc shape of erythrocytes into that of spheroechinocytes. The results are discussed within the frame of the biological actions of dirhamnolipid, and the possible future applications of this biosurfactant.

    Topics: Cell Membrane; Cell Shape; Cholesterol; Erythrocytes; Fluoresceins; Glycolipids; Hemoglobins; Hemolysis; Humans; Kinetics; Lysophosphatidylcholines; Membranes, Artificial; Permeability; Phosphatidylcholines; Phosphatidylethanolamines; Polyethylene Glycols; Potassium; Pseudomonas aeruginosa; Unilamellar Liposomes

2010
Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin.
    Biochimica et biophysica acta, 2003, Apr-01, Volume: 1611, Issue:1-2

    Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and possesses several other interesting biological activities. This work deals with the molecular mechanism of membrane permeabilization by incorporation of surfactin. The surfactin-induced vesicle contents leakage was monitored by following release of carboxyfluorescein entrapped into unilamellar vesicles made of palmitoyloleoylphosphatidylcholine (POPC). The effect of the addition of cholesterol, dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylethanolamine (POPE) was also checked. It was observed that surfactin was able to induce content leakage at concentrations far below the onset surfactin/lipid ratio for membrane solubilization to occur, which in our system was around 0.92. Electron microscopy showed that vesicles were present after addition of surfactin at a ratio below this value, whereas no vesicles could be observed at ratios above it. Cholesterol and POPE attenuated the membrane-perturbing effect of surfactin, whereas the effect of DPPC was to promote surfactin-induced leakage, indicating that bilayer sensitivity to surfactin increases with the lipid tendency to form lamellar phases, which is in agreement with our previous observation that surfactin destabilizes the inverted-hexagonal structure. Fourier-transform infrared spectroscopy (FTIR) was used to specifically follow the effect of surfactin on different parts of the phospholipid bilayer. The effect on the C=O stretching mode of vibration of POPC indicated a strong dehydration induced by surfactin. On the other hand, the C-H stretching bands showed that the lipopeptide interacts with the phospholipid acyl chains, resulting in considerable membrane fluidization. The reported effects could be useful to explain surfactin-induced 'pore' formation underlying the antibiotic and other important biological actions of this bacterial lipopeptide.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Fluoresceins; Lipid Bilayers; Lipopeptides; Liposomes; Microscopy, Electron; Molecular Structure; Peptides, Cyclic; Permeability; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Spectroscopy, Fourier Transform Infrared

2003