1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-2-dipalmitoyl-3-phosphatidylethanolamine

1-palmitoyl-2-oleoylphosphatidylethanolamine has been researched along with 1-2-dipalmitoyl-3-phosphatidylethanolamine* in 9 studies

Other Studies

9 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-2-dipalmitoyl-3-phosphatidylethanolamine

ArticleYear
Critical Temperature of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Monolayers and Its Possible Biological Relevance.
    The journal of physical chemistry. B, 2017, 07-20, Volume: 121, Issue:28

    Because transmembrane proteins (TMPs) can be obtained with sufficient purity for X-ray diffraction studies more frequently than decades ago, their mechanisms of action may now be elucidated. One of the pending issues is the actual interplay between transmembrane proteins and membrane lipids. There is strong evidence of the involvement of specific lipids with some membrane proteins, such as the potassium crystallographically sited activation channel (KcsA) of Streptomyces lividans and the secondary transporter of lactose LacY of Escherichia coli, the activities of which are associated with the presence of anionic phospholipids such as the phosphatidylglycerol (PG) and phosphatidyethanolamine (PE), respectively. Other proteins such as the large conductance mechanosensitive channel (MscL) of E. coli seem to depend on the adaptation of specific phospholipids to the irregular surface of the integral membrane protein. In this work we investigated the lateral compressibility of two homoacid phosphatidylethanolamines (one with both acyl chains unsaturated (DOPE), the other with the acyl chains saturated (DPPE)) and the heteroacid phosphatidyletanolamine (POPE) and their mixtures with POPG. The liquid expanded (LE) to liquid condensed (LC) transition was observed in POPE at a temperature below its critical temperature (T

    Topics: Bacterial Proteins; Compressive Strength; Escherichia coli; Escherichia coli Proteins; Ion Channels; Microscopy, Atomic Force; Monosaccharide Transport Proteins; Phosphatidylethanolamines; Potassium Channels; Streptomyces lividans; Symporters; Temperature; Thermodynamics; Unilamellar Liposomes

2017
Hybrid polymer-lipid films as platforms for directed membrane protein insertion.
    Langmuir : the ACS journal of surfaces and colloids, 2015, May-05, Volume: 31, Issue:17

    Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g., when developing systems for drug delivery. By combining poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) amphiphilic copolymers (PDMS-b-PMOXA) with various phospholipids, we obtained hybrid films with modulated properties and topology, based on phase separation, and the formation of distinct domains. By understanding the factors driving the phase separation in these hybrid lipid-polymer films, we were able to use them as platforms for directed insertion of membrane proteins. Tuning the composition of the polymer-lipids mixtures favored successful insertion of membrane proteins with desired topological distributions (in polymer or/and lipid regions). Controlled insertion and location of membrane proteins in hybrid films make these hybrids ideal candidates for numerous applications where specific spatial functionality is required.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Dimethylpolysiloxanes; Membrane Proteins; Membranes, Artificial; Models, Biological; Phosphatidylcholines; Phosphatidylethanolamines; Polyamines; Polymerization; Thermodynamics

2015
Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.
    The journal of physical chemistry. B, 2012, Dec-06, Volume: 116, Issue:48

    In this work we have investigated the selectivity of lactose permease (LacY) of Escherichia coli (E. coli) for its surrounding phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET) measurements have been performed to investigate the selectivity between a single tryptophan mutant of LacY used as donor (D), and two analogues of POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as acceptors. As a difference from previous works, now the donor has been single-W151/C154G/D68C LacY. It has been reported that the replacement of the aspartic acid in position 68 by cysteine inhibits active transport in LacY. The objectives of this work were to elucidate the phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C, induced changes in the protein-lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of the probability of each site in the annular ring being occupied by a label (μ) were similar at the studied temperatures (24 °C and 37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.

    Topics: Escherichia coli; Escherichia coli Proteins; Fluorescence Resonance Energy Transfer; Models, Molecular; Monosaccharide Transport Proteins; Phosphatidylethanolamines; Phosphatidylglycerols; Point Mutation; Symporters

2012
Acyl chain differences in phosphatidylethanolamine determine domain formation and LacY distribution in biomimetic model membranes.
    The journal of physical chemistry. B, 2011, Nov-10, Volume: 115, Issue:44

    Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are the two main components of the inner membrane of Escherichia coli. It is well-known that inner membrane contains phospholipids with a nearly constant polar headgroup composition. However, bacteria can regulate the degree of unsaturation of the acyl chains in order to adapt to different external stimuli. Studies on model membranes of mixtures of PE and PG, mimicking the proportions found in E. coli, can provide essential information on the phospholipid organization in biological membranes and may help in the understanding of membrane proteins activity, such as lactose permease (LacY) of E. coli. In this work we have studied how different phosphatidylethanolamines differing in acyl chain saturation influence the formation of laterally segregated domains. Three different phospholipid systems were studied: DOPE:POPG, POPE:POPG, and DPPE:POPG at molar ratios of 3:1. Lipid mixtures were analyzed at 24 and 37 °C through three different model membranes: monolayers, liposomes, and supported lipid bilayers (SLBs). Data from three different techniques, Langmuir isotherms, Laurdan generalized polarization, and atomic force microscopy (AFM), evidenced that only the DPPE:POPG system exhibited coexistence between gel (L(β)) and fluid (L(α)) phases at both 24 and 37 °C . In the POPE:POPG system the L(β)/L(α) coexistence appears at 27 °C. Therefore, in order to investigate the distribution of LacY among phospholipid phases, we have used AFM to explore the distribution of LacY in SLBs of the three phospholipid systems at 27 °C, where the DOPE:POPG is in L(α) phase and POPE:POPG and DPPE:POPG exhibit L(β)/L(α) coexistence. The results demonstrate the preferential insertion of LacY in fluid phase.

    Topics: Biomimetic Materials; Escherichia coli; Lipid Bilayers; Liposomes; Membrane Transport Proteins; Microscopy, Atomic Force; Phase Transition; Phosphatidylethanolamines

2011
Phase changes in supported planar bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine.
    The journal of physical chemistry. B, 2008, Aug-21, Volume: 112, Issue:33

    We studied the thermal response of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) by comparing the differential scanning calorimetry (DSC) data of liposomes with atomic force microscopy (AFM) observations on supported planar bilayers. Planar bilayers were obtained by using the Langmuir-Blodgett (LB) technique: the first leaflet transferred at 30 mN m(-1) and the second at 25 mN m(-1). The topographic evaluation of supported POPE bilayers above room temperature showed changes between 43.8 and 59.8 degrees C. These observations are discussed in relation to the main roughness (Ra) variations and are interpreted as the result of the lamellar liquid crystalline (Lalpha) to inverted hexagonal (HII) phase transition. High-magnification images obtained at 45 degrees C revealed intermediate structures in the transformation. Force spectroscopy (FS) was subsequently applied to gain further structural and nanomechanical insight into the POPE planar bilayers as a function of temperature. These measurements show that the threshold force (Fy), which is the maximum force, that the sample can withstand before breaking, increases from 1.91+/-0.11 nN at 21 degrees C up to 3.08+/-0.17 nN at 43.8 degrees C. This behavior is interpreted as a consequence of the formation of intermediate structures or stalks in the transition from the L alpha to H II phase.

    Topics: Calorimetry, Differential Scanning; Chemistry, Physical; Crystallization; Hot Temperature; Ions; Lipid Bilayers; Microscopy, Atomic Force; Phase Transition; Phosphatidylethanolamines; Pressure; Spectrophotometry; Temperature

2008
The influence of headgroup structure and fatty acyl chain saturation of phospholipids on monolayer behavior: a comparative rheological study.
    Chemistry and physics of lipids, 2007, Volume: 150, Issue:2

    This paper compares six phospholipidic monolayers at the water/chloroform interface by performing dilational rheological measurements with a drop tensiometer apparatus. The chosen lipids differ both in their headgroup structure and fatty acyl chain saturation or symmetry. The study concentrated on monolayers formed with DPPC, DPPE, DOPC, DOPE, POPC and POPE. Using a generalized Maxwell rheological model, transposed at the interface, the intimate intermolecular interactions between amphiphilic molecules are studied on and off the monolayer plane. The equilibrium and nonequilibrium phenomena are analyzed and, respectively, correlated with monolayer cohesion and with monolayer/sub-surface interactions. The purpose of this work is to gain further insights into the influences (as slight as they are) of the weak changes in phospholipid structure and on the behavior of the monolayers. The results, widely described, provide further details on nuances existing between very similar molecules, and likewise, on the synergies created between the different effects.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Biochemistry; Chloroform; Fatty Acids; Membrane Lipids; Models, Chemical; Molecular Conformation; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Rheology; Surface Properties

2007
N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes.
    Biochimica et biophysica acta, 2005, Aug-30, Volume: 1715, Issue:1

    N-Acyl phosphatidylethanolamines are negatively charged phospholipids, which are naturally occurring albeit at low abundance. In this study, we have examined how the amide-linked acyl chain affected the membrane behavior of the N-acyl-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel-->liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also in monolayers. In bilayer membranes, both N-palmitoyl-POPE and N-palmitoyl-DPPE failed to form sterol-rich domains, and in fact appeared to displace sterol from sterol/N-palmitoyl-sphingomyelin domains. The present data provide new information about the effects of saturated NAPEs on the lateral distribution of cholesterol in NAPE-containing membranes. These findings may be of relevance to neural cells which accumulate NAPEs during stress and cell injury.

    Topics: Calorimetry, Differential Scanning; Cholesterol; Diphenylhexatriene; Fluorescence Polarization; Lipid Bilayers; Membrane Microdomains; Phosphatidylethanolamines

2005
MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain.
    Biophysical journal, 2003, Volume: 84, Issue:5

    In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.

    Topics: Antimicrobial Cationic Peptides; Lipid Bilayers; Macromolecular Substances; Membrane Fluidity; Molecular Conformation; Motion; Permeability; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Porosity; Protein Precursors; Stress, Mechanical; Xenopus Proteins

2003
Discontinuous unbinding of lipid multibilayers.
    Physical review letters, 2003, Jul-11, Volume: 91, Issue:2

    We have observed a discontinuous unbinding transition of lipid bilayer stacks composed of phosphatidylethanolamine and phosphatidylglycerol using x-ray diffraction. The unbinding is reversible and coincides with the main (L(beta)-->L(alpha)) transition of the lipid mixture. Interbilayer interaction potentials deduced from the diffraction data reveal that the bilayers in the L(beta) phase are only weakly bound. The unbinding transition appears to be driven by an abrupt increase in steric repulsion resulting from increased thermal undulations of the bilayers upon entering the fluid L(alpha) phase.

    Topics: Lipid Bilayers; Liposomes; Models, Chemical; Phosphatidylethanolamines; Phosphatidylglycerols; X-Ray Diffraction

2003