1-palmitoyl-2-oleoylphosphatidylethanolamine has been researched along with 1-2-dimyristoylphosphatidylethanolamine* in 4 studies
4 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylethanolamine and 1-2-dimyristoylphosphatidylethanolamine
Article | Year |
---|---|
Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity.
This study investigates the impact of the chemical nature of lipids and additive on the formulation and properties of pH sensitive liposomes. The objective is to understand the respective role of the formulation parameters on the liposome properties in order to optimize the conditions for efficient encapsulation of doxorubicin (DOX). These liposomes should be stable at physiological pH, and disrupt in slightly acidic media such as the tumor microenvironment to release their DOX load. The major challenge for encapsulating DOX in pH sensitive liposomes lies in the fact that this drug is soluble at low pH (when the pH-sensitive liposomes are not stable), but the DOX aqueous solubility decreases in the pH conditions corresponding to the stability of the pH-sensitive liposomes. The study of pH-sensitivity of liposomes was conducted using carboxyfluorescein (CF) encapsulated in high concentration, i.e. quenched, and following the dye dequenching as sensor of the liposome integrity. We studied the impact of (i) the chemical nature of lipids (dioleoyl phosphatidyl ethanolamine (DOPE), palmitoyl-oleoyl phosphatidyl ethanolamine (POPE) and dimyristoyl phosphatidyl ethanolamine (DMPE)) and (ii) the lipid/stabilizing agent ratio (alpha-tocopheryl succinate), on the pH sensitivity of the liposomes. Optimized liposome formulations were then selected for the encapsulation of DOX by an active loading procedure, i.e. driven by a difference in pH inside and outside the liposomes. Numerous experimental conditions were explored, in function of the pH gradient and liposome composition, which allowed identifying critical parameters for the efficient DOX encapsulation in pH-sensitive liposomes. Topics: alpha-Tocopherol; Chemistry, Pharmaceutical; Doxorubicin; Fluoresceins; Hydrogen-Ion Concentration; Lipids; Liposomes; Phosphatidylethanolamines; Solubility; Tumor Microenvironment | 2018 |
Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE.
In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein. Topics: Bacterial Outer Membrane Proteins; Molecular Dynamics Simulation; Phosphatidylethanolamines; Protein Binding; Protein Conformation; Protein Stability; Salmonella typhi | 2014 |
Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.
Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine). Topics: Dimyristoylphosphatidylcholine; Lanthanoid Series Elements; Lipid Bilayers; Magnetic Resonance Spectroscopy; Magnetics; Microscopy, Electron, Transmission; Pentetic Acid; Permeability; Phosphatidylethanolamines; Phospholipids; Scattering, Radiation | 2010 |
New insights of membrane environment effects on MscL channel mechanics from theoretical approaches.
The prokaryotic mechanosensitive channel of large conductance (MscL) is a remarkable integral membrane protein. During hypo-osmotic shock, it responses to membrane tension through large conformational changes, that lead to an open state of the pore. The structure of the channel from Mycobacterium tuberculosis has been resolved in the closed state. Numerous experiments have attempted to trap the channel in its open state but they did not succeed in obtaining a structure. A gating mechanism has been proposed based on different experimental data but there is no experimental technique available to follow this process in atomic details. In addition, it has been shown that a decrease of the lipid bilayer thickness lowered MscL activation energy and stabilized a structurally distinct closed channel intermediate. Here, we use atomistic molecular dynamics simulations to investigate the effect of the lipid bilayer thinning on our model of the structure of the Escherichia coli. We thoroughly analyze simulations of the channel embedded in two pre-equilibrated membranes differing by their hydrophobic tail length (DMPE and POPE). The MscL structure remains stable in POPE, whereas a distinct structural state is obtained in DMPE in response to hydrophobic mismatch. This latter is obtained by tilts and kinks of the transmembrane helices, leading to a widening and a diminution of the channel height. Part of these motions is guided by a competition between solvent and lipids for the interaction with the periplasmic loops. We finally conduct a principal component analysis of the simulation and compare anharmonic motions with harmonic ones, previously obtained from a coarse-grained normal mode analysis performed on the same structural model. Significant similarities exist between low-frequency harmonic motions and those observed with essential dynamics in DMPE. In summary, change in membrane thickness permits to accelerate the conformational changes involved in the mechanics of the E. coli channel, providing a closed structural intermediate en route to the open state. These results give clues for better understanding why the channel activation energy is lowered in a thinner membrane. Topics: Computer Simulation; Environment; Escherichia coli Proteins; Ion Channels; Lipid Bilayers; Mechanotransduction, Cellular; Models, Chemical; Phosphatidylethanolamines; Principal Component Analysis; Protein Conformation; Protein Structure, Secondary | 2008 |