1-palmitoyl-2-oleoylphosphatidylcholine and mastoparan

1-palmitoyl-2-oleoylphosphatidylcholine has been researched along with mastoparan* in 3 studies

Other Studies

3 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylcholine and mastoparan

ArticleYear
The effect of pH on the lytic activity of a synthetic mastoparan-like peptide in anionic model membranes.
    Chemistry and physics of lipids, 2018, Volume: 216

    Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.0 L1A was 6 times more efficient in lysing large anionic (1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)/(8:2)) unilamellar vesicles (LUVs) than at pH 4.0. Despite the reduction of 60% in the L1A net charge in basic pH its affinity for this vesicle was almost insensitive to pH. On the other hand, L1A insertion into monolayers was dramatically influenced by subphase condition, showing that, in the neutral and basic subphases, the peptide induced surface pressure changes that surpassed the membrane lateral pressure, being able to destabilize a bilayer structure. In addition, in the basic subphase, visualization of the compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):POPG (8:2) + 4.8 mol% L1A showed that the peptide induced significant changes in solid lipid domains, indicating its capability in perturbing lipid-packing. An insight into L1A lytic activity was also obtained in giant unilamellar vesicles (GUVs) using phase contrast microscopy. The suppression of L1A lytic activity at acidic pH is in keeping with its lower insertion capability and ability to disturb the lipid monolayer. The lytic activity observed under neutral and basic conditions showed a quick and stochastic leakage following a lag-time. The permeability and the leakage-time averaged over at least 14 single GUVs were dependent on the bulk condition. At basic pH, permeability is higher and quicker than in a neutral medium in good accordance with the lipid-packing perturbation.

    Topics: Anions; Hydrogen-Ion Concentration; Intercellular Signaling Peptides and Proteins; Particle Size; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Surface Properties; Wasp Venoms

2018
Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase.
    The FEBS journal, 2014, Volume: 281, Issue:17

    The mastoparan peptide is known as an inducer of the mitochondrial permeability transition. Although mastoparan was suggested to interact with a proteinaceous target in mitochondria to induce this transition, the action sites of mastoparan have not yet been investigated. To clarify whether specific interactions of mastoparan with receptors or enzymes are associated with the induction of this permeability transition, we examined the effects of d-isomeric peptides, which were synthesized using d-amino acids assembled in endogenous (inverso mastoparan) and reverse (retro-inverso mastoparan) orientations. When we added inverso mastoparan to isolated mitochondria, the peptide caused the permeability transition in a partially cyclosporin A-sensitive manner at lower doses and in a cyclosporin A-insensitive manner at higher ones. The manners of action and the potencies of inverso mastoparan were close to those of parent mastoparan, indicating that the targets of mastoparan for induction of the permeability transition were neither receptors, nor enzymes in the mitochondria. Retro-inverso mastoparan also had the same effect on the mitochondria as mastoparan, although the potencies of the effect were weaker. Not only on mitochondria, but also on phospholipid vesicles, mastoparan and inverso mastoparan showed massive permeabilization effects at the same potencies, although retro-inverso mastoparan showed weaker ones. These results indicate that mastoparan interacted with the phospholipid phase of the mitochondrial membrane (and not with specific proteins) to induce the permeabilization in cyclosporin A-sensitive and -insensitive manners.

    Topics: Animals; Cyclosporine; Intercellular Signaling Peptides and Proteins; Male; Membrane Lipids; Mitochondria, Liver; Mitochondrial Membrane Transport Proteins; Mitochondrial Membranes; Mitochondrial Permeability Transition Pore; Peptides; Phosphatidylcholines; Rats; Stereoisomerism; Wasp Venoms

2014
New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles.
    Langmuir : the ACS journal of surfaces and colloids, 2011, Sep-06, Volume: 27, Issue:17

    Antimicrobial peptides of the mastoparans family exert their bactericidal activity by binding to lipid membranes, inducing pores or defects and leaking the internal contents of vesicles and cells. However, this does not seem to be the only mechanism at play, and they might be important in the search for improved peptides with lower undesirable side effects. This work deals with three mastoparans peptides, Polybia-MP-1(MP-1), N2-Polybia-MP-1 (N-MP-1), and Mastoparan X (MPX), which exhibit high sequence homology. They all have three lysine residues and amidated C termini, but because of the presence of two, one, and no aspartic acid residues, respectively, they have +2, +3, and +4 net charges at physiological pH. Here we focus on the effects of these mastoparans peptides on anionic model membranes made of palmitoleyoilphosphatidylcholine (POPC) and palmitoleyoilphosphatidylglycerol (POPG) at 1:1 and 3:1 molar ratios in the presence and in the absence of saline buffer. Zeta potential experiments were carried out to measure the extent of the peptides' binding and accumulation at the vesicle surface, and CD spectra were acquired to quantify the helical structuring of the peptides upon binding. Giant unilamellar vesicles were observed under phase contrast and fluorescence microscopy. We found that the three peptides induced the leakage of GUVs at a gradual rate with many characteristics of the graded mode. This process was faster in the absence of saline buffer. Additionally, we observed that the peptides induced the formation of dense regions of phospholipids and peptides on the GUV surface. This phenomenon was easily observable for the more charged peptides (MPX > N-MP-1 > MP-1) and in the absence of added salt. Our data suggest that these mastoparans accumulate on the bilayer surface and induce a transient interruption to its barrier properties, leaking the vesicle contents. Next, the bilayer recovers its continuity, but this happens in an inhomogeneous way, forming a kind of ply with peptides sandwiched between two juxtaposed membranes. Eventually, a peptide-lipid aggregate forming a lump is formed at high peptide-to-lipid ratios.

    Topics: Intercellular Signaling Peptides and Proteins; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Sodium Chloride; Surface Properties; Wasp Venoms

2011