1-palmitoyl-2-oleoylphosphatidylcholine has been researched along with epicatechin-gallate* in 3 studies
3 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylcholine and epicatechin-gallate
Article | Year |
---|---|
A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts.
The present study aimed to explore the underlying mechanisms of epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) involved in their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. In the synthetic "lipid raft-like" liposome, A-type ECG and EGCG dimers incorporated into the liposome with high affinity and decreased the fluidity of the liposome. In 3T3-L1 preadipocytes, A-type ECG and EGCG dimers possibly bonded to lipid rafts cholesterol and disrupted the integrity of lipid rafts, thus exerting their notable inhibitory effects on 3T3-L1 preadipocytes differentiation by suppressing mitotic clonal expansion process and mRNA levels of PPARγ, C/EBPα and SREBP1C. A highly positive correlation between the cholesterol binding capacity of the two dimers and their inhibitory effect on 3T3-L1 preadipocytes differentiation (R Topics: 3T3-L1 Cells; Adipocytes; Animals; Catechin; Cell Differentiation; Cholesterol; Dimerization; Lipid Bilayers; Membrane Microdomains; Mice; Microscopy, Fluorescence; Molecular Dynamics Simulation; Phosphatidylcholines; Phosphatidylethanolamines | 2017 |
Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.
Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Topics: Antioxidants; Catechin; Chlorobenzenes; Dimyristoylphosphatidylcholine; Dose-Response Relationship, Drug; Kinetics; Lipid Bilayers; Magnetic Resonance Spectroscopy; Membrane Lipids; Molecular Dynamics Simulation; Molecular Structure; Oxidation-Reduction; Phosphatidylcholines; Time Factors; Wine | 2014 |
Stereospecificity in membrane effects of catechins.
Green tea catechins consisting of catechin stereoisomers and their derivatives have been suggested to show biological activities through the interactions with cellular membranes. Their effects on membrane fluidity were comparatively studied by measuring fluorescence polarization of liposomal membranes prepared with phospholipids and cholesterol. All catechin stereoisomers reduced membrane fluidity by acting on the hydrophilic and hydrophobic regions of membrane bilayers at 20-500 microM. Both epicatechins in a cis form were more effective for reducing membrane fluidity than both catechins in a trans form. (-)-Epicatechin, (+)-epicatechin, (-)-catechin and (+)-catechin reduced membrane fluidity in increasing order of intensity. Such difference between optical isomers was increased by chiral cholesterol added to membrane lipids. In reversed-phase chromatographic evaluation, (-)-epicatechin and (+)-epicatechin were more hydrophobic than (-)-catechin and (+)-catechin, although hydrophobicity was not distinguishable between optical isomers. Stereospecificity in the membrane effects of catechin stereoisomers may be induced by the different hydrophobicity of geometrical isomers and the chirality of membrane lipid components. At lower concentrations (5-100 microM), (-)-epigallocatechin gallate and (-)-epicatechin gallate reduced membrane fluidity more significantly than (-)-epicatechin, suggesting that the intensive membrane effect contributes to the potent medicinal utility of (-)-epigallocatechin gallate. Topics: 1-Naphthylamine; 1,2-Dipalmitoylphosphatidylcholine; Anilino Naphthalenesulfonates; Catechin; Chromatography, High Pressure Liquid; Diphenylhexatriene; Flavonoids; Fluorescence Polarization; Fluorescent Dyes; Liposomes; Membrane Fluidity; Membranes, Artificial; Phosphatidylcholines; Stereoisomerism; Structure-Activity Relationship | 2001 |