1-palmitoyl-2-oleoylphosphatidylcholine and dimethyldioctadecylammonium

1-palmitoyl-2-oleoylphosphatidylcholine has been researched along with dimethyldioctadecylammonium* in 2 studies

Other Studies

2 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylcholine and dimethyldioctadecylammonium

ArticleYear
Characterization of cationic liposomes. Influence of the bilayer composition on the kinetics of the liposome breakdown.
    Chemistry and physics of lipids, 2011, Volume: 164, Issue:7

    The cationic large unilamellar mixed liposomes from 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and didodecyldimethylammonium bromide (DDAB) or dioctadecyldimethylammonium bromide (DODAB) were prepared. The influence of the addition of Triton X-100 (TX-100) or octaethylene glycol mono-n-dodecylether (C(12)E(8)) on the membrane integrity was investigated turbidimetrically. The stability of the liposomal systems was estimated by monitoring fluorimetrically at 25 °C the rate of spontaneous and surfactant-induced release of entrapped 5(6)-carboxyfluorescein (CF). In order to evaluate the interaction of the cationic DODAB guest with the host POPC membrane, the main phase transition temperatures (T(m)) were determined by electron paramagnetic resonance spectroscopy (EPR). All the results obtained show that the presence of DODAB and DDAB stabilizes the POPC liposomes. The extent of stabilization depends on the concentration and nature of the cationic guest.

    Topics: Cations; Electron Spin Resonance Spectroscopy; Kinetics; Lipid Bilayers; Liposomes; Molecular Dynamics Simulation; Nephelometry and Turbidimetry; Octoxynol; Phase Transition; Phosphatidylcholines; Polyethylene Glycols; Quaternary Ammonium Compounds; Transition Temperature

2011
Solubilization of lipid bilayers by myristyl sucrose ester: effect of cholesterol and phospholipid head group size.
    Chemistry and physics of lipids, 2009, Volume: 157, Issue:2

    The solubilization of biological membranes by detergents has been used as a major method for the isolation and purification of membrane proteins and other constituents. Considerable interest in this field has resulted from the finding that different components can be solubilized selectively. Certain membrane constituents are incorporated into small micelles, whereas others remain in the so-called detergent-resistant membrane domains that are large enough to be separated by centrifugation. The detergent-resistant fractions contain an elevated percentage of cholesterol, and thus its interaction with specific lipids and proteins may be key for membrane organization and regulation of cellular signaling events. This report focuses on the solubilization process induced by the sucrose monoester of myristic acid, beta-D-fructofuranosyl-6-O-myristyl-alpha-D-glucopyranoside (MMS), a nonionic detergent. We studied the effect of the head group and the cholesterol content on the process. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and dioctadecyl-dimethyl-ammonium chloride (DODAC) vesicles were used, and the solubilization process was followed using Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) generalized polarization (GP) measurements, carried out in the cuvette and in the 2-photon microscope. Our results indicate that: (i) localization of the MMS moieties in the lipid bilayer depends on the characteristics of the lipid polar head group and influences the solubilization process. (ii) Insertion of cholesterol molecules into the lipid bilayer protects it from solubilizaton and (iii) the microscopic mechanism of solubilization by MMS implies the decrease in size of the individual liposomes.

    Topics: 2-Naphthylamine; Cholesterol; Detergents; Kinetics; Laurates; Lipid Bilayers; Liposomes; Myristic Acid; Phosphatidylcholines; Phospholipids; Quaternary Ammonium Compounds; Solubility; Spectrometry, Fluorescence

2009