1-palmitoyl-2-oleoylphosphatidylcholine has been researched along with 7-dehydrocholesterol* in 2 studies
2 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylcholine and 7-dehydrocholesterol
Article | Year |
---|---|
Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential.
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, a representative sterol in higher eukaryotic membranes, is known to increase membrane dipole potential. In this work, we explored the effects of immediate (7-DHC and desmosterol) and evolutionary (ergosterol) precursors of cholesterol on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS. Our results show that the effect of these precursors on membrane dipole potential is very different from that observed with cholesterol, although the structural differences among them are subtle. These results assume relevance, since accumulation of cholesterol precursors due to defective cholesterol biosynthesis has been reported to result in several inherited metabolic disorders such as the Smith-Lemli-Opitz syndrome. Interestingly, cholesterol (and its precursors) has a negligible effect on dipole potential in polyunsaturated membranes. We interpret these results in terms of noncanonical orientation of cholesterol in these membranes. Our results constitute the first report on the effect of biosynthetic and evolutionary precursors of cholesterol on dipole potential, and imply that a subtle change in sterol structure can significantly alter the dipolar field at the membrane interface. Topics: Cholesterol; Dehydrocholesterols; Desmosterol; Ergosterol; Lipid Bilayers; Membrane Potentials; Phosphatidylcholines; Pyridinium Compounds; Water | 2012 |
Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol). Topics: Cholestadienols; Cholesterol; Dehydrocholesterols; Ergosterol; Kinetics; Liposomes; Nystatin; Permeability; Phosphatidylcholines; Phytosterols; Spectrometry, Fluorescence; Sterols | 2006 |