1-palmitoyl-2-oleoylphosphatidylcholine and 1-2-diphytanoylphosphatidylcholine

1-palmitoyl-2-oleoylphosphatidylcholine has been researched along with 1-2-diphytanoylphosphatidylcholine* in 5 studies

Other Studies

5 other study(ies) available for 1-palmitoyl-2-oleoylphosphatidylcholine and 1-2-diphytanoylphosphatidylcholine

ArticleYear
Atomically detailed lipid bilayer models for the interpretation of small angle neutron and X-ray scattering data.
    Biochimica et biophysica acta, 2015, Volume: 1848, Issue:2

    We present a new atom density profile (ADP) model and a statistical approach for extracting structural characteristics of lipid bilayers from X-ray and neutron scattering data. Models for five lipids with varying head and tail chemical composition in the fluid phase, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), are optimized using a simplex based method to simultaneously reproduce both neutron and X-ray scattering data. Structural properties are determined using statistical analysis of multiple optimal model structures. The method and models presented make minimal assumptions regarding the atomic configuration, while taking into account the underlying physical properties of the system. The more general model and statistical approach yield data with well defined uncertainties, indicating the precision in determining density profiles, atomic locations, and bilayer structural characteristics. Resulting bilayer structures include regions exhibiting large conformational variation. Due to the increased detail in the model, the results demonstrate the possibility of a distinct hydration layer within the interfacial (backbone) region.

    Topics: Lipid Bilayers; Models, Chemical; Neutron Diffraction; Phosphatidylcholines; Phosphatidylglycerols; Phosphatidylserines; Quantum Theory; Scattering, Radiation; X-Ray Diffraction

2015
Fast membrane hemifusion via dewetting between lipid bilayers.
    Soft matter, 2014, Dec-14, Volume: 10, Issue:46

    The behavior of lipid bilayers is important to understand the functionality of cells like the trafficking of ions. Standard procedures to explore the properties of lipid bilayers and hemifused states typically use supported membranes or vesicles. Both techniques have several shortcomings in terms of bio-relevance or accessibility for measurements. In this article, the formation of individual free standing hemifused states between model cell membranes is studied using an optimized microfluidic scheme which allows for simultaneous optical and electrophysiological measurements. In the first step, two model membranes are formed at a desired location within a microfluidic device using a variation of the droplet interface bilayer (DiB) technique. In the second step, the two model membranes are brought into contact forming a single hemifused state. For all tested lipids, the hemifused state between free standing membranes forms within hundreds of milliseconds, i.e. several orders of magnitude faster than those reported in literature. The formation of a hemifused state is observed as a two stage process, whereas the second stage can be explained as a dewetting process under no-slip boundary conditions. The formed hemifusion states have a long lifetime and a single fusion event can be observed when triggered by an applied electric field as demonstrated for monoolein.

    Topics: Electric Capacitance; Glycerides; Lipid Bilayers; Microfluidic Analytical Techniques; Phosphatidylcholines

2014
Steric confinement of proteins on lipid membranes can drive curvature and tubulation.
    Proceedings of the National Academy of Sciences of the United States of America, 2010, Apr-27, Volume: 107, Issue:17

    Deformation of lipid membranes into curved structures such as buds and tubules is essential to many cellular structures including endocytic pits and filopodia. Binding of specific proteins to lipid membranes has been shown to promote membrane bending during endocytosis and transport vesicle formation. Additionally, specific lipid species are found to colocalize with many curved membrane structures, inspiring ongoing exploration of a variety of roles for lipid domains in membrane bending. However, the specific mechanisms by which lipids and proteins collaborate to induce curvature remain unknown. Here we demonstrate a new mechanism for induction and amplification of lipid membrane curvature that relies on steric confinement of protein binding on membrane surfaces. Using giant lipid vesicles that contain domains with high affinity for his-tagged proteins, we show that protein crowding on lipid domain surfaces creates a protein layer that buckles outward, spontaneously bending the domain into stable buds and tubules. In contrast to previously described bending mechanisms relying on local steric interactions between proteins and lipids (i.e. helix insertion into membranes), this mechanism produces tubules whose dimensions are defined by global parameters: domain size and membrane tension. Our results suggest the intriguing possibility that confining structures, such as lipid domains and protein lattices, can amplify membrane bending by concentrating the steric interactions between bound proteins. This observation highlights a fundamental physical mechanism for initiation and control of membrane bending that may help explain how lipids and proteins collaborate to create the highly curved structures observed in vivo.

    Topics: Biophysics; Histidine; Models, Chemical; Phosphatidylcholines; Protein Binding; Proteins; Unilamellar Liposomes

2010
Energetics of pore formation induced by membrane active peptides.
    Biochemistry, 2004, Mar-30, Volume: 43, Issue:12

    Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.

    Topics: Alamethicin; Animals; Anti-Bacterial Agents; Circular Dichroism; Ion Channels; Lipid Bilayers; Melitten; Membranes, Artificial; Models, Chemical; Phosphatidylcholines; Protein Binding; Spectroscopy, Fourier Transform Infrared; Thermodynamics; X-Ray Diffraction

2004
Inhibition of lecithin-cholesterol acyltransferase by diphytanoyl phosphatidylcholine.
    The Journal of biological chemistry, 1987, Jul-05, Volume: 262, Issue:19

    Model high density lipoproteins containing human apolipoprotein A-I, cholesterol, and a variety of phosphatidylcholines (PCs) have been prepared and tested. The PCs included 1-palmitoyl-2-oleoyl PC (POPC) and its diether analog 1-O-hexadecyl-2-oleyl PC (POPC ether), 1,2-diphytanoyl PC (DPhPC), 1-palmitoyl-2-phytanoyl PC, and 1-phytanoyl-2-palmitoyl PC. All ester PCs were good acyl donors for the transesterification of cholesterol catalyzed by human lecithin-cholesterol acyltransferase except DPhPC, which showed no reactivity. The PCs containing one phytanoyl chain donated an acyl chain to cholesterol as fast as non-branched fatty acyl chains. However, the competitive inhibition of lecithin-cholesterol acyltransferase by POPC ether and DPhPC was similar, and both lipids formed a macromolecular matrix that supported the reactivity of other ester PC substrates. The bulk of physicochemical properties of model high density lipoproteins composed of DPhPC were indistinguishable from those of POPC ether. These properties included 1) alpha-helical content of the apoprotein as assessed by circular dichroism, 2) microviscosity as determined from the fluorescence polarization and lifetime of the probe 1,6-diphenyl-1,3,5-hexatriene, 3) macromolecular weight based upon analytical gel filtration chromatography, and 4) surface polarity revealed by the fluorescence of 6-propionyl-2(dimethylamino)naphthalene. The only major difference in a physicochemical property was that the molecular surface area of DPhPC (area = 69 A2 at collapse pressure) determined by monolayer methods was 17 A2 greater than that of POPC (area = 53 A2 at collapse pressure) at all surface pressures measured. We suggest that the properties of DPhPC in being enzymatically nonreactive but a competitive inhibitor are due to its much larger size and that the active site of lecithin-cholesterol acyltransferase cannot bind phospholipid substrates in a catalytically productive way if they have surface areas of 70 A2 or more.

    Topics: Kinetics; Lipoproteins, HDL; Phosphatidylcholine-Sterol O-Acyltransferase; Phosphatidylcholines

1987