1-palmitoyl-2-oleoylglycero-3-phosphoglycerol has been researched along with 1-2-dioleoyloxy-3-(trimethylammonium)propane* in 4 studies
4 other study(ies) available for 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol and 1-2-dioleoyloxy-3-(trimethylammonium)propane
Article | Year |
---|---|
Multistep Interactions between Ibuprofen and Lipid Membranes.
Ibuprofen (IBU) interacts with phosphatidylcholine membranes in three distinct steps as a function of concentration. In a first step (<10 μM), IBU electrostatically adsorbs to the lipid headgroups and gradually decreases the interfacial potential. This first step helps to facilitate the second step (10-300 μM), in which hydrophobic insertion of the drug occurs. The second step disrupts the packing of the lipid acyl chains and expands the area per lipid. In a final step, above 300 μM IBU, the lipid membrane begins to solubilize, resulting in a detergent-like effect. The results described herein were obtained by a combination of fluorescence binding assays, vibrational sum frequency spectroscopy, and Langmuir monolayer compression experiments. By introducing trimethylammonium-propane, phosphatidylglycerol, and phosphatidylethanolamine lipids as well as cholesterol, we demonstrated that both the chemistry of the lipid headgroups and the packing of lipid acyl chains can substantially influence the interactions between IBU and the membranes. Moreover, different membrane chemistries can alter particular steps in the binding interaction. Topics: Cholesterol; Fatty Acids, Monounsaturated; Fluorescent Dyes; Hydrophobic and Hydrophilic Interactions; Ibuprofen; Lipid Bilayers; Phosphatidylethanolamines; Phosphatidylglycerols; Quaternary Ammonium Compounds; Rhodamines; Static Electricity | 2018 |
Profile of changes in lipid bilayer structure caused by beta-amyloid peptide.
beta-Amyloid peptide (A beta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated A beta is toxic to neurons, but the mechanism of toxicity is uncertain. One hypothesis is that interactions between A beta aggregates and cell membranes mediate A beta toxicity. Previously, we described a positive correlation between the A beta aggregation state and surface hydrophobicity, and the ability of the peptide to decrease fluidity in the center of the membrane bilayer [Kremer, J. J., et al. (2000) Biochemistry 39, 10309--10318]. In this work, we report that A beta aggregates increased the steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the hydrophobic center of the membrane in phospholipids with anionic, cationic, and zwitterionic headgroups, suggesting that specific charge--charge interactions are not required for A beta--membrane interactions. A beta did not affect the fluorescence lifetime of DPH, indicating that the increase in anisotropy is due to increased ordering of the phospholipid acyl chains rather than changes in water penetration into the bilayer interior. A beta aggregates affected membrane fluidity above, but not below, the lipid phase-transition temperature and did not alter the temperature or enthalpy of the phospholipid phase transition. A beta induced little to no change in membrane structure or water penetration near the bilayer surface. Overall, these results suggest that exposed hydrophobic patches on the A beta aggregates interact with the hydrophobic core of the lipid bilayer, leading to a reduction in membrane fluidity. Decreases in membrane fluidity could hamper functioning of cell surface receptors and ion channel proteins; such decreases have been associated with cellular toxicity. Topics: 2-Naphthylamine; Amyloid beta-Peptides; Cations; Diphenylhexatriene; Fatty Acids, Monounsaturated; Fluorescence Polarization; Fluorescent Dyes; Humans; Laurates; Lipid Bilayers; Liposomes; Membrane Fluidity; Phosphatidylcholines; Phosphatidylglycerols; Quaternary Ammonium Compounds; Spectrometry, Fluorescence; Surface Properties; Time Factors | 2001 |
2H NMR and polyelectrolyte-induced domains in lipid bilayers.
2H NMR studies of polyelectrolyte-induced domain formation in lipid bilayer membranes are reviewed. The 2H NMR spectrum of choline-deuterated phosphatidylcholine (PC) reports on any and all sources of lipid bilayer surface charge, since these produce a conformation change in the choline head group of PC, manifest as a change in the 2H NMR quadrupolar splitting. In addition, homogeneous and inhomogeneous surface charge distributions are differentiated. Adding polyelectrolytes to lipid bilayers consisting of mixtures of oppositely charged and zwitterionic lipids produces 2H NMR spectra which are superpositions of two Pake sub-spectra: one corresponding to a polyelectrolyte-bound lipid population and the other to a polyelectrolyte-free lipid population. Quantitative analysis of the quadrupolar splittings and spectral intensities of the two sub-spectra indicate that the polyelectrolyte-bound populations is enriched with oppositely charged lipid, while the polyelectrolyte-free lipid population is correspondingly depleted. The same domain-segregation effect is produced whether cationic polyelectrolytes are added to anionic lipid bilayers or anionic polyelectrolytes are added to cationic lipid bilayers. The 2H NMR spectra permit a complete characterization of domain composition and size. The anion:cation ratio within the domains is always stoichiometric, as expected for a process driven by Coulombic interactions. The zwitterionic lipid content of the domains is always statistical, reflecting the systems tendency to minimize the entropic cost of demixing charged lipids into domains. Domain formation is observed even with rather short polyelectrolytes, suggesting that individual polyelectrolyte chains aggregate at the surface to form "superdomains". Overall, the polyelectrolyte bound at the lipid bilayer surface appears to lie flat along the surface and to be essentially immobilized through its multiple electrostatic contacts. Topics: Antigens, Polyomavirus Transforming; Cation Exchange Resins; Cetrimonium; Cetrimonium Compounds; Detergents; Deuterium; Electrolytes; Fatty Acids, Monounsaturated; Fluorescent Dyes; Lipid Bilayers; Magnetic Resonance Spectroscopy; Molecular Weight; Phosphatidylcholines; Phosphatidylglycerols; Polystyrenes; Quaternary Ammonium Compounds | 2000 |
Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids.
The lamellar/nonlamellar phase preferences of lipid model membranes composed of mixtures of several cationic lipids with various zwitterionic and anionic phospholipids were examined by a combination of differential scanning calorimetry and (31)P NMR spectroscopy. All of the cationic lipids utilized in this study form only lamellar phases in isolation. Mixtures of these cationic lipids with zwitterionic strongly lamellar phase-preferring lipids such as phosphatidylcholine form only the lamellar liquid-crystalline phase even at high temperatures, as expected. Moreover, mixtures of these cationic lipids with strongly nonlamellar phase-preferring zwitterionic lipids such as phosphatidylethanolamine exhibit a markedly reduced propensity to form inverted nonlamellar phases, again as expected. However, when mixed with anionic lipids such as phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid, a marked enhancement of nonlamellar phase-forming propensity occurs, despite the fact both components of the mixture are nominally lamellar phase-preferring. An examination of the lamellar/nonlamellar phase transition temperatures and the nature of the nonlamellar phases formed, as a function of temperature and of the composition of the mixture, indicates that the propensity to form inverted nonlamellar phases is maximal in mixtures where the mean surface charge of the membrane surface approaches neutrality and decreases markedly with increases in the density of positive or negative charge at the membrane surface. Moreover, the onset temperatures of the reversed hexagonal phase rise more steeply than do those of the inverted cubic phase as the ratio of cationic and anionic lipids is varied, suggesting that the formation of inverted hexagonal phases is more sensitive to this surface charge effect. These results indicate that surface charge per se is a significant and effective modulator of the lamellar/nonlamellar phase preferences of membrane lipids and that charged group interactions at membrane surfaces may have a major role in regulating this particular membrane property. Topics: Anions; Calorimetry, Differential Scanning; Cations; Fatty Acids, Monounsaturated; Fluorescent Dyes; Glycerophospholipids; Lipid Bilayers; Magnetic Resonance Spectroscopy; Phosphatidic Acids; Phosphatidylethanolamines; Phosphatidylglycerols; Quaternary Ammonium Compounds; Structure-Activity Relationship; Surface Properties | 2000 |