1-oleoyl-2-acetylglycerol and chelerythrine

1-oleoyl-2-acetylglycerol has been researched along with chelerythrine* in 11 studies

Other Studies

11 other study(ies) available for 1-oleoyl-2-acetylglycerol and chelerythrine

ArticleYear
Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells.
    Pflugers Archiv : European journal of physiology, 2007, Volume: 453, Issue:4

    Spontaneous local Ca(2+) release events have been observed in airway smooth muscle cells (SMCs), but the underlying mechanisms are largely unknown. Considering that each type of SMCs may use its own mechanisms to regulate local Ca(2+) release events, we sought to investigate the signaling pathway for spontaneous local Ca(2+) release events in freshly isolated mouse airway SMCs using a laser scanning confocal microscope. Application of ryanodine to block ryanodine receptors (RyRs) abolished spontaneous local Ca(2+) release events, indicating that these events are RyR-mediated Ca(2+) sparks. Inhibition of inositol 1,4,5-triphosphate receptors (IP(3)Rs) by 2-aminoethoxydiphenyl-borate (2-APB) or xestospongin-C significantly blocked the activity of Ca(2+) sparks. Under patch clamp conditions, dialysis of IP(3) to activate IP(3)Rs increased the activity of local Ca(2+) events in control cells but had no effect in ryanodine-pretreated cells. The RyR agonist caffeine augmented the frequency of Ca(2+) sparks in cells pretreated with and without 2-APB or xestospongin-C. The specific phospholipase C (PLC) blocker U73122 decreased the activity of Ca(2+) sparks and prevented xestospongin-C from producing the inhibitory effect. The protein kinase C (PKC) activator 1-oleoyl-2-acetyl-glycerol or phorbol-12-myristate-13-acetate inhibited Ca(2+) sparks, whereas the PKC inhibitor chelerythrine, PKCvarepsilon inhibitory peptide, or PKCvarepsilon gene knockout produced an opposite effect. Collectively, our data suggest that the basal activation of PLC regulates the activity of RyR-mediated, spontaneous Ca(2+) sparks in airway SMCs through two distinct signaling pathways: a positive IP(3)-IP(3)R pathway and a negative diacylglycerol-PKCvarepsilon pathway.

    Topics: Alkaloids; Animals; Benzophenanthridines; Boron Compounds; Caffeine; Calcium; Cells, Cultured; Diglycerides; Estrenes; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Mice; Myocytes, Smooth Muscle; Oxazoles; Pyrrolidinones; Respiratory System; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Signal Transduction; Type C Phospholipases

2007
Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes.
    The Journal of physiology, 2006, Dec-01, Volume: 577, Issue:Pt 2

    Angiotensin II (Ang II) is a potent vasoconstrictor with an important role in controlling blood pressure; however, there is little information on cellular mechanisms underlying Ang II-evoked vasoconstrictor responses. The aim of the present study is to investigate the effect of Ang II on cation conductances in freshly dispersed rabbit mesenteric artery myocytes at the single-channel level using patch-clamp techniques. In cell-attached patches, bath application of low concentrations of Ang II (1 nM) activated cation channel currents (Icat1) with conductances states of about 15, 30 and 45 pS. At relatively high concentrations, Ang II (100 nM) inhibited Icat1 but evoked another cation channel (Icat2) with a conductance of approximately 2 pS. Ang II-evoked Icat1 and Icat2 were inhibited by the AT1 receptor antagonist losartan and the phospholipase C (PLC) inhibitor U73122. The diacylglycerol (DAG) lipase inhibitor RHC80267 initially induced Icat1 which was subsequently inhibited to reveal Icat2. The DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (1 microM) activated Icat1 and Icat2 but inositol 1,4,5-trisphosphate did not evoke either conductance. The protein kinase C (PKC) inhibitor chelerythrine (3 microM) potentiated Ang II-evoked Icat1 and inhibited Icat2 whereas the PKC activator phorbol-12,13-dibutyrate (1 microM) reduced Ang II-induced Icat1 but activated Icat2. Moreover in cell-attached patches pretreated with chelerythrine, application of 100 nM Ang II activated Icat1. These data indicate that PKC inhibits Icat1 but stimulates Icat2. Agents that deplete intracellular Ca2+ stores also activated cation channel currents with similar properties to Icat2. Bath application of anti-TRPC6 and anti-TRPC1 antibodies to inside-out patches inhibited Icat1 and Icat2, respectively. Also flufenamic acid and zero external Ca2+ concentration, respectively, potentiated and reduced Ang II-evoked Icat1. Immunocytochemical studies showed TRPC6 and TRPC1 expression with TRPC6 preferentially distributed in the plasma membrane and TRPC1 expression located throughout the myocyte. These results indicate that Ang II activates two distinct cation conductances in mesenteric artery myocytes by stimulation of AT1 receptors linked to PLC. Icat1 is activated by DAG via a PKC-independent mechanism whereas Icat2 involves DAG acting via a PKC-dependent pathway. Higher concentrations of Ang II inhibit Icat1 by activating an inhibitory effect of PKC. It is proposed that TRPC6 and TRPC1 chann

    Topics: Alkaloids; Angiotensin II; Animals; Antibodies; Benzophenanthridines; Calcium; Diglycerides; Dose-Response Relationship, Drug; Enzyme Activators; Enzyme Inhibitors; Estrenes; Flufenamic Acid; Immunohistochemistry; In Vitro Techniques; Ion Channel Gating; Membrane Potentials; Mesenteric Arteries; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phorbol 12,13-Dibutyrate; Protein Kinase C; Pyrrolidinones; Rabbits; Receptor, Angiotensin, Type 1; Signal Transduction; Time Factors; TRPC Cation Channels; Type C Phospholipases; Vasoconstrictor Agents

2006
Properties of a constitutively active Ca2+-permeable non-selective cation channel in rabbit ear artery myocytes.
    The Journal of physiology, 2003, May-15, Volume: 549, Issue:Pt 1

    In smooth muscle, non-selective cation conductances contribute to agonist-evoked depolarisation and contraction, and in the present study using patch-pipette techniques we describe the properties of a constitutively active cation channel. With whole-cell recording in K+-free conditions, there was a spontaneous current with a reversal potential (Er) that was altered by replacement of external Na+ by an impermeant cation, but not when external Cl- was replaced by an impermeant anion. The tonic cation inward current could be carried by Ca2+ ions and was greatly enhanced when the external Ca2+ concentration was reduced. In outside-out patches there was spontaneous cation channel activity that could be resolved into three conductance states of about 15, 25 and 40 pS, all with the same Er as the whole-cell current. Kinetic analysis revealed that there were two open times of about 1 and 5 ms and that the currents displayed bursting kinetics with burst durations of approximately 5 ms and 25 ms. Removal of external Ca2+ ions increased the probability of channel opening (Po) sixfold, which was associated with an increase in the longer burst duration. Bath application of the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol increased Po, but phorbol 12,13-dibutyrate, which stimulates protein kinase C (PKC), reduced channel activity. In contrast, the PKC inhibitor chelerythrine increased the activity of channel currents. It is concluded that in rabbit ear artery myocytes there is a constitutively active Ca2+-permeable cation channel that is regulated by external Ca2+ ions and suppressed by tonic PKC activity. It is proposed that this mechanism may contribute to the resting membrane conductance and basal Ca2+ influx in this particular arterial preparation.

    Topics: Alkaloids; Animals; Arteries; Benzophenanthridines; Calcium; Cations; Diglycerides; Ear, External; Enzyme Inhibitors; Ion Channels; Kinetics; Membrane Potentials; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Patch-Clamp Techniques; Phenanthridines; Protein Kinase C; Rabbits

2003
Adenosine suppresses the response of neurons to gaba in the superficial laminae of the rat spinal dorsal horn.
    Neuroscience, 2003, Volume: 119, Issue:1

    With the nystatin-perforated whole-cell patch-clamp recording technique, the modulatory effects of adenosine on GABA-activated whole-cell currents were investigated in neurons acutely dissociated from the superficial laminae (laminae I and II) of the rat spinal dorsal horn. The results showed that: (1) GABA acted on GABA(A) receptor and elicited inward Cl(-) currents (I(GABA)) at a holding potential (V(H)) of -40 mV; (2) adenosine suppressed GABA-induced Cl(-) current with affecting neither the reversal potential of I(GABA) nor the apparent affinity of GABA to its receptor; (3) N6-cyclo-hexyladenosine, a selective A(1) adenosine receptor agonist, mimicked the suppressing effect of adenosine on I(GABA), whereas 8-cyclopentyl-1,3-dipropylxanthine, a selective A(1) adenosine receptor antagonist, blocked the suppressing effect of adenosine; (4) chelerythrine, an inhibitor of protein kinase C, reduced the suppressing effect of adenosine on I(GABA); (5) pretreatment with 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxy-methyl) ester, a Ca(2+) chelator, did not affect adenosine-induced suppression of I(GABA). The results indicate that: (1) the suppression of adenosine on I(GABA) is mediated by adenosine A(1) receptor and through a Ca(2+)-independent protein kinase C transduction pathway; (2) the interactions between adenosine and GABA might be involved in the modulation of nociceptive information transmission at spinal cord level.

    Topics: Adenosine; Alkaloids; Analgesics; Animals; Animals, Newborn; Benzophenanthridines; Bicuculline; Chelating Agents; Diglycerides; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Conductivity; Enzyme Inhibitors; GABA Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Isoquinolines; Lithium; Membrane Potentials; Muscimol; Neural Inhibition; Patch-Clamp Techniques; Phenanthridines; Posterior Horn Cells; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Spinal Cord; Sulfonamides; Xanthines

2003
Human beta(3)-adrenoreceptors couple to KvLQT1/MinK potassium channels in Xenopus oocytes via protein kinase C phosphorylation of the KvLQT1 protein.
    Naunyn-Schmiedeberg's archives of pharmacology, 2003, Volume: 368, Issue:2

    Modulation of the slow component of the delayed rectifier potassium current (IKs) in heart critically affects cardiac arrhythmogenesis. Its current amplitude is regulated by the sympathetic nervous system. However, the signal transduction from the beta-adrenergic system to the KvLQT1/MinK (KCNQ1/KCNE1) potassium channel, which is the molecular correlate of the IKs current in human cardiomyocytes, is not sufficiently understood. In the human heart, three subtypes of beta-adrenergic receptors (beta(1-3)-ARs) have been identified. Only beta(1)- and beta(3)-ARs have been shown so far to be involved in the regulation of IKs. Special interest has been paid to the regulation of IKs by the beta(3)-AR because of its potential importance in congestive heart failure. In heart failure beta(1)-ARs are known to be down regulated while the density of beta(3)-ARs is increased. Unfortunately, studies on the modulation of IKs by beta(3)-AR revealed conflicting results. We investigated the functional role of protein kinase C (PKC) in the signal transduction cascade between beta3-adrenergic receptors and IKs by expressing heterologously its molecular components, the KvLQT1/MinK potassium channel, together with human beta(3)-AR in Xenopus oocytes. Membrane currents were measured with the double electrode voltage-clamp technique. Using activators and inhibitors of PKC we demonstrated that PKC is involved in this regulatory process. Experiments in which the putative C-terminal PKC-phosphorylation sites in the KvLQT1 protein were destroyed by site directed mutagenesis reduced the isoproterenol-induced current to 27+/-3,5% compared to control. These results indicate that the amplitude of KvLQT1/MinK current is mainly increased by PKC activation. Our results suggest that the regulation of the KvLQT1/MinK potassium channel via beta(3)-AR is substantially mediated by PKC phosphorylation of the KvLQT1 protein at its four C-terminal PKC phosphorylation sites.

    Topics: Alkaloids; Animals; Benzophenanthridines; Cyclic AMP-Dependent Protein Kinases; Diglycerides; Humans; Indoles; Isoproterenol; KCNQ Potassium Channels; KCNQ1 Potassium Channel; Maleimides; Oocytes; Patch-Clamp Techniques; Phenanthridines; Phosphorylation; Potassium Channels; Potassium Channels, Voltage-Gated; Protein Kinase C; Receptors, Adrenergic, beta-3; Signal Transduction; Time Factors; Xenopus

2003
ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-alpha.
    American journal of physiology. Cell physiology, 2001, Volume: 281, Issue:1

    It was previously determined that ANG II and phorbol esters inhibit Kv current in neurons cultured from newborn rat hypothalamus and brain stem in a protein kinase C (PKC)- and Ca2+-dependent manner. Here, we have further defined this signaling pathway by investigating the roles of "physiological" activators of PKC and different PKC isozymes. The cell-permeable PKC activators, diacylglycerol (DAG) analogs 1,2-dioctanoyl-sn-glycerol (1 micromol/l, n = 7) and 1-oleoyl-2-acetyl-sn-glycerol (1 micromol/l, n = 6), mimicked the effect of ANG II and inhibited Kv current. These effects were abolished by the PKC inhibitor chelerythrine (1 micromol/l, n = 5) or by chelation of internal Ca2+ (n = 8). PKC antisense (AS) oligodeoxynucleotides (2 micromol/l) against Ca2+-dependent PKC isoforms were applied to the neurons to manipulate the endogenous levels of PKC. PKC-alpha-AS (n = 4) treatment abolished the inhibitory effects of ANG II and 1-oleoyl-2-acetyl-sn-glycerol on Kv current, whereas PKC-beta-AS (n = 4) and PKC-gamma-AS (n = 4) did not. These results suggest that the angiotensin type 1 receptor-mediated effects of ANG II on neuronal Kv current involve activation of PKC-alpha.

    Topics: Alkaloids; Angiotensin II; Animals; Benzophenanthridines; Calcium; Cells, Cultured; Delayed Rectifier Potassium Channels; Diglycerides; Enzyme Inhibitors; Immunoblotting; Isoenzymes; Neurons; Oligonucleotides, Antisense; Patch-Clamp Techniques; Phenanthridines; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Protein Kinase C; Protein Kinase C-alpha; Rats; Rats, Sprague-Dawley; Receptors, Angiotensin

2001
Role and mechanism of PKC in ischemic preconditioning of pig skeletal muscle against infarction.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2000, Volume: 279, Issue:2

    Protein kinase C (PKC) inhibitors, chelerythrine (Chel, 0.6 mg) and polymyxin B (Poly B, 1.0 mg), and PKC activators, phorbol 12-myristate 13-acetate (PMA, 0.05 mg) and 1-oleoyl-2-acetyl glycerol (OAG, 0.1 mg), were used as probes to investigate the role of PKC in mediation of ischemic preconditioning (IPC) of noncontracting pig latissimus dorsi (LD) muscles against infarction in vivo. These drugs were delivered to each LD muscle flap (8 x 12 cm) by 10 min of local intra-arterial infusion. It was observed that LD muscle flaps sustained 43 +/- 5% infarction when subjected to 4 h of global ischemia and 24 h of reperfusion. IPC with three cycles of 10 min ischemia-reperfusion reduced muscle infarction to 25 +/- 3% (P < 0.05). This anti-infarction effect of IPC was blocked by Chel (42 +/- 7%) and Poly B (37 +/- 2%) and mimicked by PMA (19 +/- 10%) and OAG (14 +/- 5%) treatments (P < 0.05), given 10 min before 4 h of ischemia. In addition, the ATP-sensitive K(+) (K(ATP)) channel antagonist sodium 5-hydroxydecanoate attenuated (P < 0.05) the anti-infarction effect of IPC (37 +/- 2%), PMA (44 +/- 17%), and OAG (46 +/- 9%). IPC, OAG, and Chel treatment alone did not affect mean arterial blood pressure or muscle blood flow assessed by 15-microm radioactive microspheres. Western blot analysis of muscle biopsies obtained before (baseline) and after IPC demonstrated seven cytosol-associated isoforms, with nPKCepsilon alone demonstrating progressive cytosol-to-membrane translocation within 10 min after the final ischemia period of IPC. Using differential fractionation, it was observed that nPKCepsilon translocated to a membrane compartment other than the sarcolemma and/or sarcoplasmic reticulum. Furthermore, IPC and preischemic OAG but not postischemic OAG treatment reduced (P < 0.05) muscle myeloperoxidase activity compared with time-matched ischemic controls during 16 h of reperfusion after 4 h of ischemia. Taken together, these observations indicate that PKC plays a central role in the anti-infarction effect of IPC in pig LD muscles, most likely through a PKC-K(ATP) channel-linked signal-transduction pathway.

    Topics: Adenosine; Alkaloids; Animals; Benzophenanthridines; Biological Transport; Decanoic Acids; Diglycerides; Enzyme Inhibitors; Hydroxy Acids; Infarction; Ischemic Preconditioning; Muscle, Skeletal; Neutrophils; Peroxidase; Phenanthridines; Potassium Channel Blockers; Protein Kinase C; Regional Blood Flow; Reperfusion Injury; Swine

2000
Functional effects of protein kinase C activation on the human cardiac Na+ channel.
    Circulation research, 1997, Volume: 80, Issue:3

    The cardiac Na+ current plays an important role in determining normal and abnormal impulse propagation in the heart. We have investigated the effects of protein kinase C (PKC) activation on the recombinant human cardiac Na+ channel (hH1) following heterologous expression in Xenopus laevis oocytes. Phorbol 12-myristate 13-acetate (PMA), which directly activates PKC, reduced current amplitude at all test potentials (43 +/- 12% at -10 mV). In contrast to the rat brain IIA (rBIIA) channel, there was no apparent change in either macroscopic Na+ current decay or the voltage dependence of channel gating. Further experiments indicate that the effects of PMA were mediated by PKC activation: (1) an inactive stereoisomer, 4 alpha-PMA, had no effect; (2) preincubation with the protein kinase inhibitor chelerythrine prevented the PMA effects; and (3) a hydrolyzable diacylglycerol analogue, 1-oleoyl-2-acetyl-glycerol, also reduced current (22 +/- 5%). In addition, when the alpha 1B-adrenergic receptor was coexpressed with hH1, the alpha-receptor agonist methoxamine reduced hH1 current (45 +/- 10%), an effect that could be eliminated by chelerythrine preincubation. When a conserved consensus PKC site (serine 1503) in the III-IV interdomain linker thought to be responsible for the PKC effects on rBIIA was mutated, PMA still reduced Na+ current, but the magnitude of the effect was smaller compared with that for the wild-type channel. Similar findings were obtained with alpha 1-receptor stimulation following receptor coexpression with the mutant channel. We conclude that activation of PKC modulates the human cardiac Na+ channel by at least two mechanisms, one similar to that seen with rat brain channels, involving a conserved putative PKC site, and a second more specific to the cardiac isoform.

    Topics: Alkaloids; Animals; Benzophenanthridines; Cricetinae; Diglycerides; Enzyme Activation; Humans; Ion Channel Gating; Methoxamine; Mutation; Myocardium; Patch-Clamp Techniques; Phenanthridines; Protein Kinase C; Receptors, Adrenergic, alpha-1; Sodium Channels; Tetradecanoylphorbol Acetate; Transfection; Xenopus laevis

1997
Role of protein kinase C in calcium sensitization during muscarinic stimulation in airway smooth muscle.
    The American journal of physiology, 1997, Volume: 273, Issue:4

    Muscarinic receptor stimulation increases Ca2+ sensitivity, i.e., the amount of force produced at a constant submaximal cytosolic Ca2+ concentration ([Ca2+]i), in permeabilized smooth muscle preparations. It is controversial whether this increase in Ca2+ sensitivity is in part mediated by protein kinase C (PKC). With the use of a beta-escin permeabilized canine tracheal smooth muscle (CTSM) preparation, the effect of four putative PKC inhibitors [calphostin C, chelerythrine chloride, a pseudosubstrate inhibitor for PKC [PKC peptide-(19-31)], and staurosporine] on Ca2+ sensitization induced by acetylcholine (ACh) plus GTP was determined. Preincubation with each of the inhibitors did not affect subsequent Ca2+ sensitization induced by muscarinic receptor stimulation in the presence of a constant submaximal [Ca2+]i, neither did any of these compounds reverse the increase in Ca2+ sensitivity induced by ACh plus GTP. Administration of a 1,2-diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol, did not induce Ca2+ sensitization at a constant submaximal [Ca2+]i. Thus we found no evidence that PKC mediates increases in Ca2+ sensitivity produced by muscarinic receptor stimulation in permeabilized CTSM.

    Topics: Acetylcholine; Alkaloids; Animals; Benzophenanthridines; Calcium; Cell Membrane Permeability; Cytosol; Diglycerides; Dogs; Enzyme Inhibitors; Escin; Female; Guanosine Triphosphate; In Vitro Techniques; Kinetics; Male; Muscle Contraction; Muscle, Smooth; Naphthalenes; Peptide Fragments; Phenanthridines; Protein Kinase C; Receptors, Muscarinic; Staurosporine; Trachea

1997
Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa.
    Molecular human reproduction, 1996, Volume: 2, Issue:12

    The involvement of protein kinase C (PKC) in exocytosis of the mammalian sperm acrosome is still a controversial issue. Work carried out thus far has failed to provide direct evidence for the activation of this enzyme upon stimulation with natural agonists of acrosomal exocytosis. We have therefore used progesterone stimulation of the acrosome reaction in human spermatozoa to clarify this issue. In spermatozoa preincubated under conditions known to support capacitation and fertilization in vitro, treatment with progesterone caused a time-dependent stimulation of phosphorylation of at least eight proteins ranging in size from approximately 20-220 kDa. The inclusion of the PKC inhibitors chelerythrine chloride or calphostin C reduced the observed phosphorylation in a concentration-dependent manner. Exogenously supplied phorbol 12-myristate-13-acetate (PMA) or the permeant diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (OAG), synthetic activators of PKC, also stimulated phosphorylation in preincubated spermatozoa, but inclusion of calphostin C diminished the response. Furthermore, the prior inclusion of the 1,4-dihydropyridine Ca2+ channel antagonist nifedipine also inhibited phosphorylation, suggesting that PKC is activated downstream of Ca2+ channel opening. Exocytosis triggered by progesterone was significantly inhibited by chelerythrine chloride or calphostin C. Both PMA and OAG triggered exocytosis, but the inclusion of chelerythrine chloride significantly inhibited the response; exocytotic responses were seen only in capacitated cells. These results provide the first direct evidence that PKC activation plays a role in the signal transduction pathway underlying acrosomal exocytosis in progesterone-stimulated capacitated spermatozoa.

    Topics: Acrosome; Alkaloids; Benzophenanthridines; Calcium Channel Blockers; Calcium Channels; Diglycerides; Enzyme Activation; Enzyme Inhibitors; Exocytosis; Humans; In Vitro Techniques; Male; Naphthalenes; Nifedipine; Phenanthridines; Phosphorylation; Progesterone; Protein Kinase C; Signal Transduction; Sperm Capacitation; Spermatozoa; Tetradecanoylphorbol Acetate

1996
Involvement of protein kinase C and protein tyrosine kinase pathways in tumor necrosis factor-alpha-induced clustering of ovarian theca-interstitial cells.
    Molecular and cellular endocrinology, 1993, Volume: 97, Issue:1-2

    Tumor necrosis factor-alpha (TNF) induces clustering of theca-interstitial cells (TIC) isolated from immature, hypophysectomized rats, while inhibiting luteinizing hormone (LH)-stimulated androstenedione in vitro. Stimulators of PKC, 1-oleoyl-2-acetyl-sn-glycerol (OAG, 50 and 100 microM) and phorbol-12-myristate-13-acetate (PMA, 50 nM), caused TIC clustering by 6 days in vitro. Clustering induced by these compounds resembled that induced by TNF. The protein kinase inhibitor, staurosporine at 1 and 10 nM, impaired TNF-induced TIC clustering for 6 days, as did the protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H-7); conversely, the protein kinase inhibitor, chelerythrine chloride (0.1, 1.0 or 10 microM), did not attenuate TNF-directed clustering. The protein kinase inhibitors did not reverse the suppression of LH-stimulated androstenedione by TNF. Inhibitors of the EGF receptor PTK, A23 (10, 50, or 100 microM) and A46 (0.1, 1.0, 10, or 50 microM), impaired TNF-induced TIC clustering, while TNF suppression of LH-directed androstenedione was unaffected. EGF-induced TIC clustering was also impaired by A46, while A23 was less effective. Both A23 and A46 blocked EGF attenuation of LH-directed androstenedione after 4 days. When challenged with TNF (1 ng/ml) or PMA (50 nM), PKC activity increased in TIC. A23 (50 microM) and A46 (10 microM) each alone blocked the TNF-associated increase in PKC activity; however, PKC activity attributable to PMA was unaffected by A46. Together, these results suggest that TNF-induced TIC clustering involves activation of PTK which directs subsequent increases in PKC activity; however, mechanisms by which TNF inhibits LH-stimulated steroidogenesis remains elusive.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Alkaloids; Androstenedione; Animals; Benzophenanthridines; Benzylidene Compounds; Catechols; Cell Adhesion; Diglycerides; Enzyme Activation; Female; Hypophysectomy; Isoquinolines; Luteinizing Hormone; Nitriles; Phenanthridines; Piperazines; Protein Kinase C; Protein-Tyrosine Kinases; Rats; Staurosporine; Tetradecanoylphorbol Acetate; Theca Cells; Tumor Necrosis Factor-alpha; Tyrphostins

1993