1-oleoyl-2-acetylglycerol has been researched along with 1-stearoyl-2-arachidonoylglycerol* in 2 studies
2 other study(ies) available for 1-oleoyl-2-acetylglycerol and 1-stearoyl-2-arachidonoylglycerol
Article | Year |
---|---|
A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein.
The structures, and mechanisms of activation, of plasma membrane intracellular-messenger-activated, non-selective cation channels in animal cells are not well understood. The PC12 adrenal chromaffin cell line is a well-characterized example of a nerve cell. In PC12 cells, 1-oleolyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, initiated the inflow of Ca(2+), Mn(2+) and Sr(2+). Acetylcholine and thapsigargin initiated the inflow of Ca(2+) and Mn(2+), but not of Sr(2+). The activation of bivalent cation inflow by OAG: (i) was mimicked by another membrane-permeant diacylglycerol analogue, 1,2-dioctanoyl-sn-glycerol, but not by the membrane-impermeant analogue 1-stearoyl-2-arachidonyl-sn-glycerol; (ii) was not blocked by staurosporin or chelerythrine, inhibitors of protein kinase C; (iii) was enhanced by RHC80267 and R50922, inhibitors of diacylglycerol lipase and diacylglycerol kinase respectively; and (iv) was inhibited by extracellular Ca(2+). When OAG was added after acetylcholine, the effect of OAG on Ca(2+) inflow was over-and-above that induced by acetylcholine. 2-Aminoethyl diphenylborate (2-APB) inhibited Ca(2+) inflow initiated by either acetylcholine or thapsigargin, but not that initiated by OAG. Flufenamic acid inhibited OAG-initiated, but not acetylcholine-initiated, Ca(2+) and Mn(2+) inflow. OAG-initiated Ca(2+) inflow was less sensitive to inhibition by SK&F96365 than acetylcholine-initiated Ca(2+) inflow. In polyadenylated RNA prepared from PC12 cells, mRNA encoding TRP (transient receptor potential) proteins 1-6 was detected by reverse transcriptase (RT)-PCR, and in lysates of PC12 cells the endogenous TRP-6 protein was detected by Western blot analysis. It is concluded that PC12 cells express a diacylglycerol-activated, non-selective cation channel. Expression of this channel function correlates with expression of the TRP-3 and TRP-6 proteins, which have been shown previously to be activated by diacylglycerol when expressed heterologously in animal cells [Hofmann, Obukhov, Schaefer, Harteneck, Gudermann, and Schultz (1999) Nature (London) 397, 259-263]. Topics: Acetylcholine; Adrenal Gland Neoplasms; Amino Acid Sequence; Animals; Calcium; Calcium Channels; Cell Membrane; Cell Membrane Permeability; Chromaffin Cells; Diglycerides; Enzyme Inhibitors; Gene Expression Regulation; Manganese; Molecular Sequence Data; PC12 Cells; Peptide Fragments; Pheochromocytoma; Rats; RNA, Messenger; Strontium; Transcription, Genetic; TRPC Cation Channels | 2001 |
Arachidonate activation of protein kinase C may be involved in the stimulation of protein synthesis by insulin in L6 myoblasts.
Insulin stimulated protein synthesis in L6 myoblasts but did not increase the labelling of DAG or the release of phosphocholine from phosphatidylcholine. The DAG lipase inhibitor, RHC 80267, more than doubled the amount of label appearing in DAG but did not stimulate protein synthesis. Even in the presence of the DAG lipase inhibitor insulin failed to have any effect on DAG labelling, and conversely RHC 80267 did not modify the insulin-induced increase in protein synthesis. These results suggest that endogenous DAG production is not involved in the stimulation of protein synthesis by insulin. However, exogenous diacylglycerols (1-oleoyl-2-acetyl glycerol and 1-stearoyl-2-arachidonoyl glycerol) both stimulated protein synthesis in L6 myoblasts. The efficacy of the former (arachidonate-free) DAG suggested that their action was by activation of protein kinase C rather than by arachidonate release and prostaglandin formation. Ibuprofen, an inhibitor of cyclo-oxygenase failed to block the effects of insulin whereas a second cyclo-oxygenase inhibitor, indomethacin had only a partial inhibitory effect. The protein kinase C (PKC) inhibitor, RO-31-8220, totally blocked the effect of insulin. Since indomethacin is also recognised to inhibit phospholipase A2, the data suggests that insulin acts on protein synthesis in myoblasts by arachidonate activation of PKC. Topics: Animals; Arachidonic Acid; Cell Line; Cyclohexanones; Cyclooxygenase Inhibitors; Diglycerides; Enzyme Activation; Indoles; Insulin; Lipoprotein Lipase; Muscle Proteins; Muscles; Protein Kinase C; Pyrimidinones; Rats; Thiazoles | 1993 |