1-monooleoyl-rac-glycerol has been researched along with 1-2-oleoylphosphatidylcholine* in 10 studies
10 other study(ies) available for 1-monooleoyl-rac-glycerol and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Self-consistent field modeling of mesomorphic phase changes of monoolein and phospholipids in response to additives.
Mapping the topological phase behaviour of lipids in aqueous solution is time consuming and finding the ideal lipid system for a desired application is often a matter of trial and error. Modelling techniques that can accurately predict the mesomorphic phase behaviour of lipid systems are therefore of paramount importance. Here, the self-consistent field theory of Scheutjens and Fleer (SF-SCF) in which a lattice refinement has been implemented, is used to scrutinize how various additives modify the self-assembled phase behaviour of monoolein (MO) and 1,2-dioleoyl-phosphatidylcholine (DOPC) lipids in water. The mesomorphic behaviour is inferred from trends in the mechanical properties of equilibrium lipid bilayers with increasing additive content. More specifically, we focus on the Helfrich parameters, that is, the mean and Gaussian bending rigidities (κ and [small kappa, Greek, macron], respectively) supplemented with the spontaneous curvature of the monolayer (Jm0). We use previously established interaction parameters that position the unperturbed DOPC system in the lamellar Lα phase ([small kappa, Greek, macron] < 0, κ > 0 and Jm0 ≈ 0). Similar interaction parameters position the MO system firmly in a bicontinuous cubic phase ([small kappa, Greek, macron] > 0). In line with experimental data, a mixture of MO and DOPC tends to be in one of these two phases, depending on the mixing ratio. Moreover we find good correlations between predicted trends and experimental data concerning the phase changes of MO in response to a wide range of additives. These correlations give credibility to the use of SF-SCF modelling as a valuable tool to quickly explore the mesomorphic phase space of (phospho)lipid bilayer systems including additives. Topics: Glycerides; Lipid Bilayers; Mechanical Phenomena; Models, Molecular; Normal Distribution; Phase Transition; Phosphatidylcholines; Transition Temperature; Water | 2021 |
Impact of macromolecular crowding on the mesomorphic behavior of lipid self-assemblies.
Using LAURDAN fluorescence we observed that water dynamics measured at the interface of DOPC bilayers can be differentially regulated by the presence of crowded suspensions of different proteins (HSA, IgG, Gelatin) and PEG, under conditions where the polymers are not in direct molecular contact with the lipid interface. Specifically, we found that the decrease in water dipolar relaxation at the membrane interface correlates with an increased fraction of randomly oriented (or random coil) configurations in the polymers, as Gelatin > PEG > IgG > HSA. By using the same experimental strategy, we also demonstrated that structural transitions from globular to extended conformations in proteins can induce transitions between lamellar and non-lamellar phases in mixtures of DOPC and monoolein. Independent experiments using Raman spectroscopy showed that aqueous suspensions of polymers exhibiting high proportions of randomly oriented conformations display increased fractions of tetracoordinated water, a configuration that is dominant in ice. This indicates a greater capacity of this type of structure for polarizing water and consequently reducing its chemical activity. This effect is in line with one of the tenets of the Association Induction Hypothesis, which predicts a long-range dynamic structuring of water molecules via their interactions with proteins (or other polymers) showing extended conformations. Overall, our results suggest a crucial role of water in promoting couplings between structural changes in macromolecules and supramolecular arrangements of lipids. This mechanism may be of relevance to cell structure/function when the crowded nature of the intracellular milieu is considered. Topics: 2-Naphthylamine; Gelatin; Glycerides; Immunoglobulin G; Laurates; Lipids; Molecular Conformation; Phosphatidylcholines; Polyethylene Glycols; Polymers; Serum Albumin, Human; Water | 2021 |
Cationic interaction with phosphatidylcholine in a lipid cubic phase studied with electrochemical impedance spectroscopy and small angle X-ray scattering.
Electrochemical Impedance Spectroscopy (EIS) can be used to investigate cationic interaction with the choline headgroup in the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H. EIS was used to estimate the resistance and capacitance of a freestanding membrane of a lipid cubic phase (LCP). The membrane was formed in a small cylindrical aperture separating two compartments, containing one Pt electrode each. The impedance experiments were carried out in a two electrode setup with electrolyte solutions made of KCl, CsCl, MgCl. The interpretation of ionic interaction with phosphatidylcholine was based on estimated membrane resistances and capacitances from EIS measurements. The magnitude of cationic interaction with the lipid headgroup in the water channels is correlated to the membrane resistance that increases in the order Cs Topics: Cations; Dielectric Spectroscopy; Equipment Design; Glycerides; Phase Transition; Phosphatidylcholines; Scattering, Small Angle; Water; X-Ray Diffraction | 2018 |
Fast membrane hemifusion via dewetting between lipid bilayers.
The behavior of lipid bilayers is important to understand the functionality of cells like the trafficking of ions. Standard procedures to explore the properties of lipid bilayers and hemifused states typically use supported membranes or vesicles. Both techniques have several shortcomings in terms of bio-relevance or accessibility for measurements. In this article, the formation of individual free standing hemifused states between model cell membranes is studied using an optimized microfluidic scheme which allows for simultaneous optical and electrophysiological measurements. In the first step, two model membranes are formed at a desired location within a microfluidic device using a variation of the droplet interface bilayer (DiB) technique. In the second step, the two model membranes are brought into contact forming a single hemifused state. For all tested lipids, the hemifused state between free standing membranes forms within hundreds of milliseconds, i.e. several orders of magnitude faster than those reported in literature. The formation of a hemifused state is observed as a two stage process, whereas the second stage can be explained as a dewetting process under no-slip boundary conditions. The formed hemifusion states have a long lifetime and a single fusion event can be observed when triggered by an applied electric field as demonstrated for monoolein. Topics: Electric Capacitance; Glycerides; Lipid Bilayers; Microfluidic Analytical Techniques; Phosphatidylcholines | 2014 |
Lyotropic lipid phases confined in cylindrical pores: structure and permeability.
A model membrane system based on lipid lyotropic phases confined inside the pores of a well-defined scaffold membrane, thereby forming a double-porous membrane structure, is described. The model membrane system is characterized with regard to lipid structure, lipid location, and phase transitions, using small-angle X-ray scattering, differential scanning calorimetry, and confocal microscopy. The system enables studies of transport across oriented lipid bilayers as well as of lipids in confinement. The lipids are shown to be located inside the membrane pores, and the effect of confinement on lipid structure is shown to be small, although dependent on the surface properties of the scaffold membrane. For transport studies, Franz diffusion cells and different types of drugs/dyes are used, and the transport studies are complemented with theoretical modeling. Lipids investigated include monoolein, dioleoyl phosphatidylcholine, dimyristoyl phosphatidylcholine, and E. coli total lipid extract. In the case of monoolein, the lipid structure can be changed from a bicontinuous cubic Ia3d phase to a liquid crystalline lamellar phase, by controlling the osmotic pressure of the surrounding solution through addition of water-soluble polymer. The osmotic pressure can thereby be used as a switch, changing the permeability of the lipid phase up to 100-fold, depending on the properties of the diffusing substance. The large effect of changing the structure implies an alignment of the lamellar phase inside the pores. Topics: Calorimetry, Differential Scanning; Escherichia coli; Glycerides; Lipid Bilayers; Permeability; Phosphatidylcholines; Porosity; Scattering, Small Angle; X-Ray Diffraction | 2011 |
Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage.
Liquid-crystalline cubic-phase nanoparticles (CPNPs) (known as Cubosome particles), based on the lipid glycerol monooleate and stabilized by the nonionic block copolymer Pluronic F-127, interact with supported model membranes consisting of dioleoylphosphatidylcholine (DOPC) in a complex and dynamic fashion. Neutron reflectivity measurements on the interaction of CPNPs with bilayers of different coverage have increased our understanding of an interfacial exchange mechanism that is relevant to delivery applications. To access the composition of the adsorption layer, the method of isotopic contrast between the components was exploited by using DOPC with perdeuterated acyl chains, which are distinguishable (high scattering contrast) from the hydrogenous components of the CPNPs. The exchange of material between CPNPs and the bilayer takes place regardless of the initial bilayer coverage. However, this parameter has a strong influence on the physical nature of the layer formed upon interaction. For a bilayer of "high coverage" (80%), extensive exchange takes place between the CPNP components and the bilayer, and at steady state the surface layer comprises 72% glycerol monooleate and 8% DOPC, with no change in the solvent content. An analogous experiment involving pure glycerol monooleate liquid crystals shows that lipid exchange occurs even in the absence of the stabilizing polymer. For bilayers of "low coverage" (55%), the exchange mechanism involves an initial adsorption of material from the CPNPs to fill in the bilayer defects. However, most of the bilayer breaks up and only 15% coverage remains after 30 h. The evolution of a Bragg diffraction peak was monitored in this case to show that the bound nanoparticles occupy >7% surface coverage and have a periodicity in the density of the internal lipid structure that decreases with time. This progression is attributed to the incorporation of d-DOPC molecules within the internal cubic structure of the nanoparticles. The broadening of the diffraction peak with time, together with a final mean position that is closely related to the periodicity of the lamellar phase organization of GMO, shows that the lipid-exchange process results in either a contraction of the unit cell of the cubic-phase nanoparticles or a progression of the lipid arrangement to the lamellar phase. Topics: Glucosides; Glycerides; Lipid Bilayers; Liquid Crystals; Nanoparticles; Neutron Diffraction; Phosphatidylcholines; Phospholipids; Surface-Active Agents; Water | 2009 |
Lipid headgroup spacing and peptide penetration, but not peptide oligomerization, modulate peptide-induced fusion.
In this study, the mechanism by which an amphipathic negatively charged peptide consisting of 11 amino acids (WAE) induces fusion of liposomal phosphatidylcholine membranes is investigated. WAE-induced fusion, which only occurs when the peptide is covalently attached to the bilayer, shows a highly remarkable dependence on naturally occurring phosphatidylcholine species. The initial rate of fusion increased in the order 1-palmitoyl 2-arachidonoyl PC (PAPC) > 1-palmitoyl 2-oleoyl PC (POPC) > 1-stearoyl 2-oleoyl PC (SOPC) > dioleoyl PC (DOPC) > egg yolk PC. Interestingly, the susceptibility of the various PC species toward WAE-induced fusion matched a similar order of increase in intrinsic lipid headgroup spacing of the target membrane. The degree of spacing, in turn, was found to be related to the extent by which the fluorescence quantum yield of the Trp residue increased, which occurred upon the interaction of WAE with target membranes. Therefore, these results demonstrate an enhanced ability for WAE to engage in hydrophobic interactions when headgroup spacing increases. Thus, this latter parameter most likely regulates the degree of penetration of WAE into the target membrane. Apart from penetrating, WAE oligomerizes at the site of fusion as revealed by monitoring the self-quenching of the fluorescently derivatized lipid anchor to which WAE is attached. Clustering appears specifically related to the process of membrane fusion and not membrane aggregation. This is indicated by the fact that fusion and clustering, but not aggregation, display the same strict temperature dependence. However, evidence is presented indicating that clustering is an accompanying event rather than a prerequisite for fusion. The notion that various biologically relevant fusion phenomena are accompanied by protein clustering and the specific PC-species-dependent regulation of membrane fusion emphasize the biological significance of the peptide in serving as a model for investigating mechanisms of protein-induced fusion. Topics: Egg Yolk; Glycerides; Lipid Bilayers; Lysophosphatidylcholines; Membrane Fusion; Peptides; Phosphatidylcholines; Phosphatidylethanolamines; Temperature | 1999 |
Cubic phases for studies of drug partition into lipid bilayers.
Drug partition into lipid bilayers in a cubic liquid-crystalline phase was investigated. Glyceryl monooleate was used to form the lipid bilayer in a reversed bicontinuous cubic liquid-crystalline phase. The reason for using the cubic phase is that it may coexist with an external aqueous phase, and that the phase boundary (cubic phase/aqueous bulk) is well-defined due to the stiffness of the cubic phase. This makes the cubic phase a potential candidate for high throughput screening (HTS) of the lipophilicity and the dissociation constant (if any) of drug compounds. Clomethiazole (CMZ), lidocaine, prilocaine and 4-phenylbutylamine (4-PBA) were chosen as model drug compounds. It was shown that it is possible to determine a pH-dependent apparent partition coefficient, Kbl/w, of a drug compound using a lipid bilayer expressed as a cubic liquid-crystalline structure. Good agreement was found when the resulting Kbl/w vs. pH curves for CMZ, lidocaine and prilocaine were fitted to a mathematical expression. This included the bilayer/water partition coefficient for the unionised and ionised drug respectively and the pKa of the drug. The effect of different experimental conditions; such as amount of cubic phase, temperature, agitation, sample preparation and interfacial area between the cubic phase and the aqueous bulk on the partition kinetics were investigated as well. The studies reveal that the time needed to reach partition equilibrium was, as expected, substantially reduced (from days to hours) by decreasing the amount of cubic phase, increasing the interfacial area between the cubic phase and the aqueous phase, and increasing the temperature and the agitation of the sample. It was also shown that the bilayer affinity of 4-PBA was increased when a zwitterionic lipid (i.e. dioleoyl phosphatidylcholine, DOPC) was incorporated in the bilayer. Topics: Anesthetics, Local; Butylamines; Chemistry, Pharmaceutical; Chlormethiazole; Glycerides; Hydrogen-Ion Concentration; Kinetics; Lidocaine; Lipid Bilayers; Octanols; Phosphatidylcholines; Prilocaine; Solubility; Water; X-Ray Diffraction | 1999 |
Lipid and water diffusion in bicontinuous cubic phases measured by NMR.
Lipid and water diffusion coefficients in bicontinuous cubic liquid crystalline phases have been determined with the NMR pulsed magnetic field gradient technique. In the monoolein-water system, a discontinuity in the variation of the water diffusion coefficient with water content is observed, which coincides with the two-phase region between the two cubic phases in this system. The degree of water association to the lipid has been determined, considering the obstruction factor for diffusion in the cubic phases. The lipid diffusion coefficient increases with increased unsaturation of the lipid, and decreases when larger amphiphile molecules like cholesterol, gramicidin-A, and lyso-oleoyl-phosphatidylcholine are solubilized in the cubic phase. In a cubic liquid crystal of monoolein (MO), dioleoylphosphatidylcholine (DOPC), and water, the individual lipid diffusion coefficients have been determined simultaneously in the same sample. The diffusion coefficients of MO and DOPC differ by a factor of two, and both decrease with increasing DOPC content. The results are discussed in relation to probe techniques for measurements of lipid diffusion. Topics: Biophysical Phenomena; Biophysics; Diffusion; Glycerides; Lipids; Magnetic Resonance Spectroscopy; Phosphatidylcholines; Water | 1993 |
Chemical exchange between lamellar and non-lamellar lipid phases. A one- and two-dimensional 31P-NMR study.
One- and two-dimensional 31P-exchange NMR has been used to investigate chemical exchange between coexisting lamellar (L alpha) and non-lamellar (hexagonal HII and cubic I2) lipid phases. Samples of DOPE, DOPE/DOPC (9:1 and 7:3), DOPE/cholesterol sulfate (9:1), DOPC/monoolein (MO) (3:7 and 1:1), and DOPC/DOPE/cholesterol (1:1:2) were macroscopically oriented on glass plates and studied at the 0 degree orientation (angle between the bilayer normal and the external magnetic field), where the L alpha, HII, and I2 resonances are resolved. A reversible L alpha to HII transition was observed for all of the samples except for the DOPC/MO mixtures, which displayed a reversible L alpha to I2 transition. Near-equilibrium mixtures of L alpha and either HII or I2 were obtained after prolonged incubation at a given temperature. Two-dimensional exchange experiments were performed on DOPE at 9-14 degrees C for mixing times ranging from 500 ms to 2 s. For all samples, one-dimensional exchange experiments were performed for mixing times ranging from 100 ms to 4 s, at temperatures ranging from 3 degrees C to 73 degrees C. No evidence of lipid exchange between lamellar and non-lamellar phases was observed, indicating that if such a process occurs it is either very slow on the seconds' timescale, or involves an undetectable quantity of lipid. The results place constraints on the stability or kinetic behaviour of proposed transition intermediates (Siegel, D.P. (1986) Biophys. J. 49, 1155-1170). Topics: Chemical Phenomena; Chemistry, Physical; Cholesterol Esters; Glycerides; Magnetic Resonance Spectroscopy; Phosphatidylcholines; Phosphatidylethanolamines; Temperature | 1992 |