1-cyclohexyl-3-dodecylurea and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

1-cyclohexyl-3-dodecylurea has been researched along with 20-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 2 studies

Other Studies

2 other study(ies) available for 1-cyclohexyl-3-dodecylurea and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

ArticleYear
Role of 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of vascular function in a model of hypertension and endothelial dysfunction.
    Pharmacology, 2010, Volume: 86, Issue:3

    The objective of this study was to determine if acute inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis or reduced inactivation of epoxyeicosatrienoic acids (EETs) can correct L-N(G)-nitro-arginine-methyl-ester (L-NAME)-induced abnormal vascular reactivity in the perfused mesenteric bed and the carotid artery of spontaneously hypertensive rats (SHR). Administration of L-NAME in drinking water (80 mg/l) to SHR for 3 weeks resulted in abnormal vascular reactivity to norepinephrine and carbachol in the perfused mesenteric vascular bed and carotid artery, and significantly elevated mean arterial blood pressure (244 +/- 9 mm Hg) as compared to SHR controls drinking regular water (176 +/- 3 mm Hg). In the perfused mesenteric vascular bed, the impaired vascular responsiveness to norepinephrine was corrected by acute treatment with N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), an inhibitor of 20-HETE formation, but not by 1-cyclohexyl-3-dodecyl urea (CDU), an inhibitor of soluble epoxide hydrolase. Treatment with either HET0016 or CDU did not improve impaired carbachol-induced vasodilation in the perfused mesenteric vascular bed. In the isolated carotid artery, treatment with HET0016 corrected the L-NAME-induced increase in norepinephrine-induced vasoconstriction, whereas only CDU treatment could improve impaired carbachol-induced vasodilation. Results of this study indicate that vascular function in a state of compromised nitric oxide formation is differentially modulated by 20-HETE and EETs, and that treatment with HET0016 or CDU may improve vascular function in a state of high blood pressure and endothelial dysfunction.

    Topics: Amidines; Animals; Arachidonic Acids; Blood Pressure; Carbachol; Cardiovascular Physiological Phenomena; Carotid Arteries; Endothelial Cells; Hydroxyeicosatetraenoic Acids; Hypertension; Male; Norepinephrine; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Urea; Vascular Diseases; Vasoconstriction; Vasoconstrictor Agents; Vasodilation

2010
Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury.
    Autonomic & autacoid pharmacology, 2009, Volume: 29, Issue:1-2

    1 This study examined the contribution of cytochrome P450 metabolites of arachidonic acid in mediating ischaemia/reperfusion (I/R)-induced cardiac dysfunction in normal and diabetic rats. 2 We first compared the metabolism of arachidonic acid in microsomes prepared from the hearts of control rats and rats treated with streptozotocin (55 mg kg(-1)) to induce diabetes. The production of dihydroxyeicosatrienoic acids and epoxyeicosatrienoic acids (EETs) were similar in microsomes prepared from the hearts of control and diabetic rats, but the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was two-fold higher in diabetic hearts than in control animals. 3 We then compared the change in left ventricular pressure (P(max)), left ventricular end-diastolic pressure, coronary flow and coronary vascular resistance in isolated perfused hearts obtained from control and diabetic animals after 40 min of global ischaemia (I) followed by 30 min of reperfusion (R). The decline in cardiac function was three- to five-fold greater in the hearts obtained from diabetic vs. control animals. 4 Pretreatment of the hearts with N-hydroxy-N'-(4-butyl-2-methyl-phenyl)-formamidine (HET0016, 1 microm), a selective inhibitor of the synthesis of 20-HETE, for 30 min before I/R resulted in significant improvement in the recovery of cardiac function in the hearts obtained from diabetic but not in control rats. Perfusion with an inhibitor of soluble epoxide hydrolase, 1-cyclohexyl-3-dodecyl urea (CDU), before I/R improved the recovery of cardiac function in hearts obtained from both control and diabetic animals. Perfusion with both HET0016 and CDU resulted in significantly better recovery of cardiac function of diabetic hearts following I/R than that seen using either drug alone. Pretreatment of the hearts with glibenclamide (1 microm), an inhibitor of ATP-sensitive potassium channels, attenuated the cardioprotective effects of both CDU and HET0016. 5 This is the first study to suggest that acute blockade of the formation of 20-HETE and/or reduced inactivation of EETs could be an important strategy to reduce cardiac dysfunction following I/R events in diabetes.

    Topics: 8,11,14-Eicosatrienoic Acid; Amidines; Animals; Arachidonic Acid; Blood Glucose; Body Weight; Coronary Circulation; Cytochrome P-450 Enzyme System; Diabetes Mellitus, Experimental; Enzyme Inhibitors; Epoxide Hydrolases; Glyburide; Heart; Hydroxyeicosatetraenoic Acids; Male; Microsomes; Myocardium; Rats; Rats, Wistar; Reperfusion Injury; Urea; Vascular Resistance; Ventricular Dysfunction, Left

2009