1-aminocyclopropane-1-carboxylic acid has been researched along with 2,3,5-triiodobenzoic acid in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Poupart, J; Waddell, CS | 1 |
Hernández-Abreu, E; Herrera-Estrella, L; López-Bucio, J; Nieto-Jacobo, MF; Sánchez-Calderón, L; Simpson, J | 1 |
Filek, M; Machackova, I; Matthys-Rochon, E; Mól, R | 1 |
3 other study(ies) available for 1-aminocyclopropane-1-carboxylic acid and 2,3,5-triiodobenzoic acid
Article | Year |
---|---|
The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.
Topics: 2,4-Dichlorophenoxyacetic Acid; Abscisic Acid; Adenine; Amino Acids, Cyclic; Arabidopsis; Biological Transport; Chromosome Mapping; Dose-Response Relationship, Drug; Fluorenes; Gravitropism; Indoleacetic Acids; Indoles; Kinetin; Mutation; Phenotype; Phthalimides; Plant Roots; Triiodobenzoic Acids | 2000 |
Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.
Topics: 2,4-Dichlorophenoxyacetic Acid; Amino Acids, Cyclic; Arabidopsis; Biological Transport; Cytokinins; Dose-Response Relationship, Drug; Ethylenes; Indoleacetic Acids; Mutation; Phosphates; Plant Growth Regulators; Plant Roots; Plant Shoots; Triiodobenzoic Acids; Zeatin | 2002 |
Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize.
Topics: Amino Acids, Cyclic; Aminobutyrates; Cell Differentiation; Ethylenes; Fertilization; Flowers; Indoleacetic Acids; Oocytes; Pollen; Seeds; Triiodobenzoic Acids; Zea mays | 2004 |