1-amino-1,3-dicarboxycyclopentane and atropine

1-amino-1,3-dicarboxycyclopentane has been researched along with atropine in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (60.00)18.2507
2000's2 (40.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Cotman, CW; Kahle, JS1
Ikeda, M1
Hounsgaard, J; Svirskis, G1
Alreja, M; Hajszan, T; Leranth, C; Wu, M1
Andrianov, GN; Nozdrachev, AD; Ryzhova, IV1

Other Studies

5 other study(ies) available for 1-amino-1,3-dicarboxycyclopentane and atropine

ArticleYear
L-2-amino-4-phosphonobutanoic acid and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid reduce paired-pulse depression recorded from medial perforant path in the dentate gyrus of rat hippocampal slices.
    The Journal of pharmacology and experimental therapeutics, 1993, Volume: 266, Issue:1

    Topics: Aminobutyrates; Animals; Atropine; Baclofen; Carbachol; Cycloleucine; Depression, Chemical; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Membrane Potentials; Neural Pathways; Neurotransmitter Uptake Inhibitors; Picrotoxin; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Theophylline

1993
Reduction of phosphoinositide hydrolysis by L-amino-3-phosphonopropionate may be caused by the inhibition of synthesis of phosphatidylinositols.
    Neuroscience letters, 1993, Jul-09, Volume: 157, Issue:1

    Topics: Alanine; Animals; Atropine; Carbachol; Cycloleucine; Depression, Chemical; Hippocampus; Hydrolysis; In Vitro Techniques; Inositol; Lithium Chloride; Male; Phosphatidylinositols; Rats; Rats, Wistar

1993
Transmitter regulation of plateau properties in turtle motoneurons.
    Journal of neurophysiology, 1998, Volume: 79, Issue:1

    Topics: Animals; Atropine; Baclofen; Benzoates; Calcium Channels; Calcium Channels, L-Type; Cycloleucine; Excitatory Amino Acid Antagonists; Glycine; In Vitro Techniques; Membrane Potentials; Motor Neurons; Muscarine; Nifedipine; Patch-Clamp Techniques; Receptors, Metabotropic Glutamate; Resorcinols; Spinal Cord; Tetraethylammonium; Tetrodotoxin; Turtles

1998
Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons.
    The European journal of neuroscience, 2003, Volume: 18, Issue:5

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aconitine; Acyclovir; Animals; Animals, Newborn; Atropine; Bicuculline; Bungarotoxins; Carrier Proteins; Cell Count; Choline; Chromones; Cycloleucine; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Electric Conductivity; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; gamma-Aminobutyric Acid; Glycine; Hippocampus; Immunohistochemistry; In Vitro Techniques; Male; Membrane Potentials; Membrane Transport Proteins; Microscopy, Electron; Muscarine; Muscarinic Agonists; Muscarinic Antagonists; Neurons; Neuroprotective Agents; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Parvalbumins; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Resorcinols; Septum of Brain; Synapses; Tetrodotoxin; Tubocurarine; Valine; Vesicular Glutamate Transport Protein 2; Vesicular Transport Proteins

2003
The role of defensins in the excitability of the peripheral vestibular system in the frog: evidence for the presence of communication between the immune and nervous systems.
    Hearing research, 2007, Volume: 230, Issue:1-2

    Topics: Acetylcholine; Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; alpha-Defensins; Animals; Atropine; Cholinergic Antagonists; Cycloleucine; Defensins; Dose-Response Relationship, Drug; Glutamic Acid; Humans; Immune System; In Vitro Techniques; Inflammation; Kainic Acid; N-Methylaspartate; Naloxone; Narcotic Antagonists; Neuroimmunomodulation; Neurons, Afferent; Rabbits; Rana temporaria; Receptors, Cholinergic; Receptors, Glutamate; Receptors, Opioid; Semicircular Canals; Synaptic Transmission; Vestibule, Labyrinth

2007