1-6-anhydro-beta-glucopyranose has been researched along with arabitol* in 4 studies
4 other study(ies) available for 1-6-anhydro-beta-glucopyranose and arabitol
Article | Year |
---|---|
Sources of carbohydrates on bulk deposition in South-Western of Europe.
Scarce information is available concerning the presence of carbohydrates in rainwater. The existence of carbohydrates in bulk deposition at the town of Estarreja (Portugal), at industrial (I) and background (BG) locals, in winter and spring seasons 2016, was assessed. Seventeen carbohydrates and related compounds were identified: monosaccharides (ribose, arabinose, xylose, glucose, galactose, fructose), disaccharides (sucrose, trehalose, maltose, cellobiose), polyols (arabinitol, xylitol, myo-inositol, mannitol, glucitol, maltitol), and the anhydromonosaccharide levoglucosan. Higher content of carbohydrates was observed in spring (BG: 670 nM; I: 249 nM) than in winter (BG: 168 nM; I: 195 nM), and fructose was the carbohydrate with the highest contribution in both seasons (spring: 32%/44% (I/BG); winter: 24% (at both sites)). Fructose, myo-inositol, glucose and sucrose showed higher volume-weighted averages (VWA) concentrations in spring than in winter, possibly due to biogenic emissions typical of spring, such as pollen, and fungal spores for myo-inositol. Fructose may have derived from isomerization of glucose in biomass burning, namely in winter. Levoglucosan and galactose presented higher VWA concentration in winter than in spring, suggesting a seasonal effect related with the biomass combustion. The carbohydrates VWA concentrations were similar for samples associated with maritime and terrestrial air masses, indicating that local sources were their main contributors. Source assessment of carbohydrates by factor analysis suggested: biogenic sources for the arabinitol, myo-inositol, glucose, fructose and sucrose; soil dust for the trehalose; and anthropogenic sources from biomass burning for the galactose, arabinose and levoglucosan. The bulk deposition showed to be fundamental on removing carbohydrates from the atmosphere. Topics: Atmosphere; Biomass; Carbohydrates; Disaccharides; Dust; Environmental Monitoring; Fructose; Galactose; Glucose; Maltose; Seasons; Sucrose; Sugar Alcohols; Water Pollutants, Chemical | 2021 |
Results of an interlaboratory comparison of analytical methods for quantification of anhydrosugars and biosugars in atmospheric aerosol.
An interlaboratory comparison was performed to evaluate the analytical methods for quantification of anhydrosugars - levoglucosan, mannosan, galactosan - and biosugars - arabitol, glucose and mannitol - in atmospheric aerosol. The performance of 10 laboratories in Italy currently involved in such analyses was investigated on twenty-six PM (particulate matter) ambient filters, three synthetic PM filters and three aqueous standard solutions. An acceptable interlaboratory variability was found, determined as the mean relative standard deviation (RSD%) of the results from the participating laboratories, with the mean RSD% values ranging from 25% to 46% and decreasing with increasing sugar concentration. The investigated methods show good accuracy, evaluated as the percentage error (ε%) related to mean values, since method biases ranged within ±20% for most of the analytes measured in the different laboratories. The detailed investigation (ANOVA analysis at p < 0.05) of the contribution of each laboratory to the total variability and the measurement accuracy shows that comparable results are generated by the different methods, despite the great diversity in terms of extraction conditions, chromatographic separation - more recent LC (liquid chromatography) and EC (exchange chromatography) methods compared to more widespread GC (gas chromatography) - and detection systems, namely PAD (pulsed amperometric detection) or mass spectrometry. Topics: Aerosols; Air Pollutants; Carbohydrates; Chromatography, Liquid; Environmental Monitoring; Galactose; Gas Chromatography-Mass Spectrometry; Glucose; Italy; Mannose; Mass Spectrometry; Observer Variation; Particulate Matter; Sugar Alcohols | 2017 |
[Composition and Source Apportionments of Saccharides in Atmospheric Particulate Matter in Beijing].
Based on the newly established high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), the saccharides in PM2.5 and PM10 in Beijing from 2011 - 2012 were quantified. Fourteen saccharides were synchronously detected in the aerosols samples in Beijing, which can be divided into three categories, i. e. anhydrosugar, sugar and sugar alcohol. Anhydrosugar, coming from biomass burning, include levoglucosan, mannosan and galactosan. Sugar and sugar alcohol, emitted by the primary biogenic emission, include glucose, fructose, trehalose, arabitol, mannitol, glycerol, threitol, 2-meythltrtols (2-methylthreitol and 2-methylerythrito), xylitol and inositol. The concentrations of monosaccharide anhydrides in summer and autumn were obviously higher than those in spring and winter, while the concentrations of sugar and sugar alcohol in winter were significantly lower than those in other seasons. The results of positive matrix factorization analysis suggested that saccharides compounds in atmospheric PM in Beijing can be derived from biomass burning, suspended soil or dust, isoprene SOA, as well as direct release of airborne fungal spores and pollen. Topics: Aerosols; Air Pollutants; Beijing; Carbohydrates; Dust; Environmental Monitoring; Galactose; Glucose; Mannose; Particulate Matter; Seasons; Sugar Alcohols | 2015 |
Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China.
Fungal material (i.e., spores and fragments) is an important component of atmospheric aerosols. In order to examine the variability of fungal abundance in fine particles (PM(2.5)) during a biomass burning season, an intensive measurement campaign was conducted in the Sichuan Basin at Chengdu, a megacity in southwest China, in spring 2009. The aerosol samples were analyzed for carbonaceous species, including molecular tracers for biomass burning and fungal material, and water soluble ions. The results were interpreted with the help of principle component analysis, fire count maps, and the WRF model. Elevated concentrations of arabitol and mannitol were found with average concentrations of 21.5±16.6 ng m(-3) and 43.9±19.3 ng m(-3), respectively, which were unexpectedly higher than those measured in fine particles in any other study reported previously. Even higher concentrations were observed in cases with simultaneous enhancements in the biomass burning tracers levoglucosan and K(+). In the case of influence by pollution plumes from biomass burning regions, the fungal tracer concentrations reached maximum values of 79.6 ng m(-3) and 121.8 ng m(-3), coinciding with peak levels of levoglucosan and K(+). Statistically significant correlations were found between the simultaneously observed fungal tracers (arabitol and mannitol) and biomass burning tracers (levoglucosan and K(+)), suggesting that these species were emitted by co-located sources, and hence the elevated fungal tracers were likely associated with biomass burning activities. Topics: Aerosols; Air Microbiology; Air Pollutants; Biomass; China; Cities; Environmental Monitoring; Fires; Fungi; Glucose; Incineration; Models, Theoretical; Potassium; Principal Component Analysis; Sugar Alcohols | 2012 |