1,4-androstadiene-3,17-dione has been researched along with phytosterols in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (23.08) | 29.6817 |
2010's | 9 (69.23) | 24.3611 |
2020's | 1 (7.69) | 2.80 |
Authors | Studies |
---|---|
Claerebout, E; De Brabander, HF; Janssen, CR; Mortier, V; Noppe, H; Van Immerseel, F; Vercruysse, J; Verheyden, K | 1 |
Capolongo, F; Civitareale, C; Draisci, R; Ferretti, G; Gallina, G; Merlanti, R; Montesissa, C | 1 |
Bekaert, K; Bussche, JV; De Brabander, HF; Janssen, CR; Noppe, H; Thas, O; Vanhaecke, L; Verheyden, K; Wille, K | 1 |
Fan, SY; Wang, FQ; Wei, DZ; Wei, W | 1 |
Ashapkin, VV; Bragin, EY; Donova, MV; Dovbnya, DV; Egorova, OV; Ivashina, TV; Malakho, SG; Pekov, YA; Schelkunov, MI; Shtratnikova, VY; Sokolov, SL | 1 |
Bailly-Chouriberry, L; Bonnaire, Y; Decloedt, AI; Garcia, P; Popot, MA; Vanden Bussche, J; Vanhaecke, L | 1 |
Li, H; Rao, Z; Shao, M; Xu, M; Xu, Z; Yang, T; Zhang, X | 1 |
Li, H; Rao, Z; Shao, M; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, X | 1 |
Chen, R; Li, H; Rao, Z; Shao, M; Xu, Z; Zhang, L; Zhang, X | 1 |
Felpeto-Santero, C; Fernández-Cabezón, L; Galán, B; García, JL; García-Fernández, J; Martínez, I | 1 |
Liu, HH; Liu, M; Tao, XY; Wang, FQ; Wei, DZ; Xiong, LB; Xu, LQ; Yao, K | 1 |
Rao, Z; Shao, M; Xu, M; Xu, Z; Yang, S; Yang, T; Zhang, X | 1 |
Liu, C; Osire, T; Rao, Z; Shao, M; Xu, Z | 1 |
1 trial(s) available for 1,4-androstadiene-3,17-dione and phytosterols
Article | Year |
---|---|
Excretion of endogenous boldione in human urine: influence of phytosterol consumption.
Topics: Adult; Anabolic Agents; Androstadienes; Androstenedione; Biotransformation; Epitestosterone; Female; Food Analysis; Gas Chromatography-Mass Spectrometry; Humans; Male; Middle Aged; Molecular Structure; Phytosterols; Tandem Mass Spectrometry; Testosterone; Young Adult | 2009 |
12 other study(ies) available for 1,4-androstadiene-3,17-dione and phytosterols
Article | Year |
---|---|
Formation of boldenone and boldenone-analogues by maggots of Lucilia sericata.
Topics: Anabolic Agents; Androstadienes; Animals; Artemia; Body Weight; Chemistry Techniques, Analytical; Chromatography, Liquid; Diptera; Larva; Mass Spectrometry; Models, Chemical; Phytosterols; Quality Control; Steroids; Testosterone | 2007 |
Boldenone, boldione, and milk replacers in the diet of veal calves: the effects of phytosterol content on the urinary excretion of boldenone metabolites.
Topics: Anabolic Agents; Androstadienes; Animals; Cattle; Diet; Male; Milk Substitutes; Phytosterols; Testosterone | 2007 |
Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione.
Topics: Amino Acid Sequence; Androstadienes; Androstenedione; Biotechnology; Cloning, Molecular; Gene Deletion; Genetic Engineering; Glycine max; Molecular Sequence Data; Mycobacterium; Oxidoreductases; Phytosterols; Polymerase Chain Reaction | 2010 |
Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
Topics: Androstadienes; Androstenedione; Bacterial Proteins; Mixed Function Oxygenases; Mycobacterium; Oxidoreductases; Phytosterols | 2013 |
In vitro simulation of the equine hindgut as a tool to study the influence of phytosterol consumption on the excretion of anabolic-androgenic steroids in horses.
Topics: Amino Acids; Anabolic Agents; Androgens; Androstadienes; Androstenedione; Animals; Chromatography, High Pressure Liquid; Dietary Carbohydrates; Digestion; Fatty Acids, Volatile; Female; Horses; Male; Mycobacterium; Phytosterols; Steroids; Tandem Mass Spectrometry; Testosterone | 2015 |
Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy.
Topics: Androstadienes; Carbon; Fermentation; Fructose; Mycobacterium; Oxidoreductases; Phytosterols; Polyenes | 2015 |
A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095.
Topics: Androstadienes; Androstenedione; Bacillus subtilis; Biotransformation; Hydrogenation; Mutant Proteins; Mycobacterium; Nontuberculous Mycobacteria; Oxidoreductases; Phytosterols | 2016 |
[Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione].
Topics: Androstadienes; Fermentation; Industrial Microbiology; Mycobacterium; Oxidoreductases; Phytosterols; Plasmids | 2015 |
Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
Topics: Androstadienes; Androstenedione; Biotechnology; Biotransformation; Fermentation; Mycobacterium smegmatis; Phytosterols | 2017 |
Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
Topics: Amino Acid Substitution; Androstadienes; Bacterial Proteins; Biotransformation; Cholesterol; Diosgenin; Gene Deletion; Genetic Engineering; Metabolic Networks and Pathways; Mixed Function Oxygenases; Models, Molecular; Mutagenesis, Site-Directed; Mycobacterium; Nontuberculous Mycobacteria; Oxygenases; Phytosterols; Sequence Alignment; Sequence Analysis, Protein; Steroids | 2018 |
Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production.
Topics: Androstadienes; Aryl Hydrocarbon Hydroxylases; Industrial Microbiology; Isoenzymes; Metabolic Engineering; Metabolism; Mixed Function Oxygenases; Nontuberculous Mycobacteria; Oxidoreductases; Phytosterols; Plasmids; Polyenes; Steroid Hydroxylases; Sterols | 2019 |
Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics.
Topics: Androstadienes; Androstenedione; Mycobacteriaceae; Phytosterols; Proteomics | 2021 |