1,3-dipropyl-8-cyclopentylxanthine and glipizide

1,3-dipropyl-8-cyclopentylxanthine has been researched along with glipizide in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (33.33)18.2507
2000's1 (33.33)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Bernardi, G; Calabresi, P; Centonze, D; Pisani, A1

Other Studies

3 other study(ies) available for 1,3-dipropyl-8-cyclopentylxanthine and glipizide

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, Jun-15, Volume: 17, Issue:12

    Topics: Adenosine; Animals; Caffeine; Cerebral Cortex; Corpus Striatum; Evoked Potentials; Glipizide; Glucose; Glutamic Acid; Hypoglycemic Agents; In Vitro Techniques; Membrane Potentials; Neurons; Potassium Channel Blockers; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Synapses; Theophylline; Tolbutamide; Xanthines

1997