1,3-dipropyl-8-cyclopentylxanthine has been researched along with cgp 55845a in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (20.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
de Mendonça, A; Latini, S; Lucchi, R; Ribeiro, JA; Sebastião, AM | 1 |
Kreitzer, AC; Regehr, WG | 1 |
Carey, MR; Regehr, WG | 1 |
Hoffman, AF; Kawamura, M; Laaris, N; Lupica, CR; Masino, SA | 1 |
Myoga, MH; Regehr, WG | 1 |
5 other study(ies) available for 1,3-dipropyl-8-cyclopentylxanthine and cgp 55845a
Article | Year |
---|---|
Adenosine by activating A1 receptors prevents GABAA-mediated actions during hypoxia in the rat hippocampus.
Topics: Adenosine; Animals; Cell Hypoxia; Evoked Potentials; GABA Antagonists; gamma-Aminobutyric Acid; Hippocampus; Hypoxia, Brain; In Vitro Techniques; Muscimol; Phosphinic Acids; Propanolamines; Pyramidal Cells; Rats; Receptors, GABA-A; Receptors, Purinergic P1; Synaptic Transmission; Xanthines | 1996 |
Modulation of transmission during trains at a cerebellar synapse.
Topics: Animals; Baclofen; Calcium; Cerebellum; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glycine; GTP-Binding Proteins; In Vitro Techniques; Nerve Fibers; Phosphinic Acids; Presynaptic Terminals; Propanolamines; Purinergic P1 Receptor Antagonists; Purkinje Cells; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, Purinergic P1; Synapses; Xanthines | 2000 |
Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals.
Topics: Adrenergic alpha-2 Receptor Agonists; Adrenergic alpha-2 Receptor Antagonists; Animals; Animals, Newborn; Biophysics; Brimonidine Tartrate; Calcium; Calcium Signaling; Cerebellum; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glycine; In Vitro Techniques; Long-Term Synaptic Depression; Neural Pathways; Neuronal Plasticity; Norepinephrine; Patch-Clamp Techniques; Phosphinic Acids; Piperidines; Propanolamines; Purinergic P1 Receptor Antagonists; Purkinje Cells; Pyrazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-2; Synapses; Xanthines | 2009 |
Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors.
Topics: Adenosine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Benzoxazines; Biophysics; CA1 Region, Hippocampal; Caffeine; Calcium Channel Blockers; Dronabinol; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; In Vitro Techniques; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; Morpholines; Naphthalenes; Neural Inhibition; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Picrotoxin; Piperidines; Presynaptic Terminals; Propanolamines; Pyrazoles; Quinoxalines; Receptor, Adenosine A1; Receptor, Cannabinoid, CB1; Xanthines | 2010 |
Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses.
Topics: Adenosine A1 Receptor Antagonists; Analysis of Variance; Animals; Animals, Newborn; Calcium; Calcium Channel Blockers; Calcium Channels, R-Type; Calcium Signaling; Cerebellum; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Long-Term Potentiation; Membrane Microdomains; Neural Pathways; Nickel; omega-Agatoxin IVA; omega-Conotoxin GVIA; Patch-Clamp Techniques; Phosphinic Acids; Piperidines; Presynaptic Terminals; Propanolamines; Purkinje Cells; Pyrazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Spider Venoms; Tetrodotoxin; Xanthines | 2011 |