1,3-dipropyl-8-cyclopentylxanthine has been researched along with 3,4-dihydroxyphenylacetic acid in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Beilstein, M; Castagnoli, K; Castagnoli, N; Chen, JF; Petzer, JP; Schwarzschild, MA; Sonsalla, PK; Staal, R; Xu, K; Xu, YH | 1 |
Dziubina, A; GoĊembiowska, K | 1 |
Chiu, TH; Hsu, CW; Wang, CS | 1 |
5 other study(ies) available for 1,3-dipropyl-8-cyclopentylxanthine and 3,4-dihydroxyphenylacetic acid
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.
Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Caffeine; Catechols; Corpus Striatum; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Immunity, Innate; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroprotective Agents; Parkinsonian Disorders; Purinergic P1 Receptor Antagonists; Purines; Pyrimidines; Receptor, Adenosine A2A; Receptors, Purinergic P1; Theobromine; Triazoles; Xanthines | 2001 |
Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats.
Topics: 3,4-Dihydroxyphenylacetic Acid; Adenosine A2 Receptor Antagonists; Analysis of Variance; Animals; Area Under Curve; Brain Chemistry; Chromatography, High Pressure Liquid; Corpus Striatum; Denervation; Dopamine; Dopamine Agents; Dose-Response Relationship, Drug; Drug Interactions; Extracellular Space; Homovanillic Acid; Hydroxyindoleacetic Acid; Levodopa; Male; Malonates; Methyltyrosines; Rats; Rats, Wistar; Receptor, Adenosine A2A; Reserpine; Serotonin; Substantia Nigra; Time Factors; Triazines; Triazoles; Xanthines | 2004 |
Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice.
Topics: 3,4-Dihydroxyphenylacetic Acid; Adenosine A2 Receptor Antagonists; Animals; Caffeine; Dopamine; Homovanillic Acid; Male; Mice; Mice, Inbred BALB C; Neostriatum; Neuroprotective Agents; Phosphorylation; Pyrimidines; Serine; Triazoles; Tyrosine 3-Monooxygenase; Xanthines | 2010 |