1-3-dimethylthiourea and ethylene

1-3-dimethylthiourea has been researched along with ethylene* in 4 studies

Other Studies

4 other study(ies) available for 1-3-dimethylthiourea and ethylene

ArticleYear
An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.
    Plant physiology and biochemistry : PPB, 2016, Volume: 105

    Root hairs are plastic in response to nutrient supply, but relatively little is known about their development under low ammonium (NH4(+)) conditions. This study showed that reducing NH4(+) for 3 days in wild-type Arabidopsis seedlings resulted in drastic elongation of root hairs. To investigate the possible mediation of ethylene and auxin in this process, seedlings were treated with 2,3,5-triiodobenzoic acid (TIBA, auxin transport inhibitor), 1-naphthylphthalamic acid (NPA, auxin transport inhibitor), p-chlorophenoxy isobutyric acid (PCIB, auxin action inhibitor), aminoethoxyvinylglycine (AVG, chemical inhibitor of ethylene biosynthesis), or silver ions (Ag(+), ethylene perception antagonist) under low NH4(+) conditions. Our results showed that TIBA, NPA and PCIB did not inhibit root hair elongation under low NH4(+) conditions, while AVG and Ag(+) completely inhibited low NH4(+)-induced root hair elongation. This suggested that low NH4(+)-induced root hair elongation was dependent on the ethylene pathway, but not the auxin pathway. Further genetic studies revealed that root hair elongation in auxin-insensitive mutants was sensitive to low NH4(+) treatment, but elongation was less sensitive in ethylene-insensitive mutants than wild-type plants. In addition, low NH4(+)-induced root hair elongation was accompanied by reactive oxygen species (ROS) accumulation. Diphenylene iodonium (DPI, NADPH oxidase inhibitor) and dimethylthiourea (DMTU, ROS scavenger) inhibited low NH4(+)-induced root hair elongation, suggesting that ROS were involved in this process. Moreover, ethylene acted together with ROS to modulate root hair elongation under low NH4(+) conditions. These results demonstrate that a signaling pathway involving ethylene and ROS participates in regulation of root hair elongation when Arabidopsis seedlings are subjected to low NH4(+) conditions.

    Topics: Ammonium Compounds; Arabidopsis; Ethylenes; Glycine; Indoleacetic Acids; Models, Biological; Onium Compounds; Plant Roots; Reactive Oxygen Species; Seedlings; Thiourea

2016
Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis.
    Journal of experimental botany, 2013, Volume: 64, Issue:5

    Foliar NH4(+) exposure is linked to inhibition of lateral root (LR) formation. Here, the role of shoot ethylene in NH4(+)-induced inhibition of LR formation in Arabidopsis was investigated using wild-type and mutant lines that show either blocked ethylene signalling (etr1) or enhanced ethylene synthesis (eto1, xbat32). NH4(+) exposure of wild-type Arabidopsis led to pronounced inhibition of LR production chiefly in the distal root, and triggered ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in the shoot. It is shown that shoot contact with NH4(+) is necessary to stimulate shoot ethylene evolution. The ethylene antagonists Ag(+) and aminoethoxyvinylglycine (AVG) mitigated LR inhibition under NH4(+) treatment. The decrease in LR production was significantly greater for eto1-1 and xbat32 and significantly less for etr1-3. Enhanced shoot ethylene synthesis/signalling blocked recovery of LR production when auxin was applied in the presence of NH4(+) and negatively impacted shoot AUX1 expression. The findings highlight the important role of shoot ethylene evolution in NH4(+)-mediated inhibition of LR formation.

    Topics: Arabidopsis; Ethylenes; Glucuronidase; Indoleacetic Acids; Onium Compounds; Plant Roots; Plant Shoots; Quaternary Ammonium Compounds; Reactive Oxygen Species; Seedlings; Signal Transduction; Thiourea

2013
The participation of hydrogen peroxide in methyl jasmonate-induced NH(4)(+) accumulation in rice leaves.
    Journal of plant physiology, 2007, Volume: 164, Issue:11

    Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent.

    Topics: Abscisic Acid; Acetates; Cyclopentanes; Ethylenes; Glutathione; Hydrogen Peroxide; Nitric Oxide Donors; Oryza; Oxylipins; Phosphoinositide-3 Kinase Inhibitors; Plant Leaves; Quaternary Ammonium Compounds; Seedlings; Sodium Benzoate; Thiourea

2007
Induction of ascorbate peroxidase by ethylene and hydrogen peroxide during growth of cultured soybean cells.
    Molecules and cells, 1999, Apr-30, Volume: 9, Issue:2

    In cultured soybean cells, a transient ethylene burst in the pre-stationary phase was followed by an induction of ascorbate peroxidase (AsPOX) in the stationary phase. Treatment of cells with the ethylene antagonist, silver thiosulfate (STS), resulted in the suppression of enzyme activity. Application of the ethylene releasing agent 2-chloroethylphosphonic acid (CEPA) in the medium led to an increased enzyme activity when treated in the pre-stationary phase. On the contrary, a remarkable inhibitory effect on enzyme activity was elicited by 1,3-dimethyl-2-thiourea (DMTU), trapping the hydrogen peroxide generated when treated in the stationary phase. Likewise, a steady level of AsPOX transcript was reduced by STS treatment. Furthermore, its effect appeared to be more rapid and prominent during the pre-stationary phase. It is suggested that the induction of AsPOX in cultured soybean cells during the stationary phase could result, at least in part, by the hydrogen peroxide generated as a result of preceding ethylene production.

    Topics: Amino Acid Sequence; Ascorbate Peroxidases; Base Sequence; Cell Division; Cells, Cultured; Cloning, Molecular; Cytosol; DNA, Complementary; Enzyme Induction; Ethylenes; Gene Expression Regulation, Plant; Glycine max; Hydrogen Peroxide; Molecular Sequence Data; Organophosphorus Compounds; Peroxidases; Plant Growth Regulators; RNA, Plant; Sequence Analysis, DNA; Thiosulfates; Thiourea; Transcription, Genetic

1999