1-3-dimethylthiourea and diacetyldichlorofluorescein

1-3-dimethylthiourea has been researched along with diacetyldichlorofluorescein* in 3 studies

Other Studies

3 other study(ies) available for 1-3-dimethylthiourea and diacetyldichlorofluorescein

ArticleYear
NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
    Journal of plant physiology, 2015, Feb-01, Volume: 174

    The involvement of hydrogen peroxide (H2O2) generated by nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) in the antioxidant defense system was assessed in salt-challenged Arabidopsis thaliana seedlings. In the wild-type, short-term salt exposure led to a transient and significant increase of H2O2 concentration, followed by a marked increase in catalase (CAT, EC 1.11.16), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) activities. Pre-treatment with either a chemical trap for H2O2 (dimethylthiourea) or two widely used NADPH oxidase inhibitors (imidazol and diphenylene iodonium) significantly decreased the above-mentioned enzyme activities under salinity. Double mutant atrbohd/f plants failed to induce the antioxidant response under the culture conditions. Under long-term salinity, the wild-type was more salt-tolerant than the mutant based on the plant biomass production. The better performance of the wild-type was related to a significantly higher photosynthetic activity, a more efficient K(+) selective uptake, and to the plants' ability to deal with the salt-induced oxidative stress as compared to atrbohd/f. Altogether, these data suggest that the early H2O2 generation by NADPH oxidase under salt stress could be the beginning of a reaction cascade that triggers the antioxidant response in A. thaliana in order to overcome the subsequent reactive oxygen species (ROS) production, thereby mitigating the salt stress-derived injuries.

    Topics: Antioxidants; Arabidopsis; Arabidopsis Proteins; Ascorbate Peroxidases; Catalase; Fluoresceins; Gene Expression Regulation, Plant; Glutathione Reductase; Hydrogen Peroxide; Imidazoles; Malondialdehyde; Mutation; NADPH Oxidases; Onium Compounds; Sodium Chloride; Stress, Physiological; Thiourea; Time Factors

2015
Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression.
    Journal of cellular physiology, 1998, Volume: 175, Issue:2

    Intracellular reactive oxygen species (ROS) may participate in cellular responses to various stimuli including hemodynamic forces and act as signal transduction messengers. Human umbilical vein endothelial cells (ECs) were subjected to laminar shear flow with shear stress of 15, 25, or 40 dynes/cm2 in a parallel plate flow chamber to demonstrate the potential role of ROS in shear-induced cellular response. The use of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to measure ROS levels in ECs indicated that shear flow for 15 minutes resulted in a 0.5- to 1.5-fold increase in intracellular ROS. The levels remained elevated under shear flow conditions for 2 hours when compared to unsheared controls. The shear-induced elevation of ROS was blocked by either antioxidant N-acetyl-cysteine (NAC) or catalase. An iron chelator, deferoxamine mesylate, also significantly reduced the ROS elevation. A similar inhibitory effect was seen with a hydroxyl radical (.OH) scavenger, 1,3-dimethyl-2-thiourea (DMTU), suggesting that hydrogen peroxide (H202), .OH, and possibly other ROS molecules in ECs were modulated by shear flow. Concomitantly, a 1.3-fold increase of decomposition of exogenously added H2O2 was observed in extracts from ECs sheared for 60 minutes. This antioxidant activity, abolished by a catalase inhibitor (3-amino-1,2,4-triazole), was primarily due to the catalase. The effect of ROS on intracellular events was examined in c-fos gene expression which was previously shown to be shear inducible. Decreasing ROS levels by antioxidant (NAC or catalase) significantly reduced the induction of c-fos expression in sheared ECs. We demonstrate for the first time that shear force can modulate intracellular ROS levels and antioxidant activity in ECs. Furthermore, the ROS generation is involved in mediating shear-induced c-fos expression. Our study illustrates the importance of ROS in the response and adaptation of ECs to shear flow.

    Topics: Acetylcysteine; Amitrole; Antioxidants; Catalase; Chelating Agents; Deferoxamine; Endothelium, Vascular; Fluoresceins; Free Radical Scavengers; Gene Expression Regulation; Genes, fos; Hemodynamics; Humans; Hydrogen Peroxide; Reactive Oxygen Species; RNA; Thiourea; Umbilical Cord

1998
In vivo visualization of oxidative changes in microvessels during neutrophil activation.
    The American journal of physiology, 1993, Volume: 264, Issue:3 Pt 2

    This study was designed to characterize temporal changes of oxidative metabolism in microvascular endothelium in vivo associated with neutrophil adhesion and diapedesis. The rat mesentery was loaded with dichlorofluorescein (DCFH) diacetate, a hydroperoxide-sensitive fluorescent probe that is trapped within viable cells as a nonfluorescent form and is converted to fluorescent dichlorofluorescein (DCF) by hydroperoxides. The fluorescent light emission was recorded with digital microscopy and its camera response was calibrated by superfusion of the mesentery with known concentrations of hydroperoxides. After rinsing with a precursor-free solution, it was possible to observe both the neutrophil adhesion and fluorescence changes in venular endothelium during superfusion with platelet-activating factor (PAF, 100 nM) by alternately changing light sources. In the PAF-treated animals, DCF fluorescence in the venular wall was markedly elevated concurrent with an increase in the number of adherent neutrophils. An onset of a significant DCF fluorescence was observed as early as 10 min after PAF application. The venular oxidative changes were co-localized with neutrophils adhering to the endothelium or migrating into the interstitium. The oxidative impact in the venular wall superfused with 100 nM PAF for 40 min was equivalent to that induced by the 10-min superfusion of 0.8 mM of tert-butyl hydroperoxide. Pretreatment with dipyridyl, an iron chelator, or dimethylthiourea, a hydroxyl radical scavenger, significantly attenuated the PAF-induced oxidative changes in the venule but had little effect on neutrophil adhesion. These findings suggest that an endothelial cell-dependent mechanism involving an iron-catalyzed reaction may have a role in enhancement of neutrophil-mediated oxidative stress in venular endothelium.

    Topics: 2,2'-Dipyridyl; Animals; Antigens, CD; CD18 Antigens; Cell Adhesion; Endothelium, Vascular; Fluoresceins; Fluorescent Dyes; Free Radical Scavengers; Hydroxides; Hydroxyl Radical; Iron; Iron Chelating Agents; Male; Microcirculation; Neutrophils; Oxidation-Reduction; Peroxides; Platelet Activating Factor; Rats; Rats, Wistar; tert-Butylhydroperoxide; Thiourea

1993