1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole has been researched along with jasmonic-acid* in 3 studies
3 other study(ies) available for 1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole and jasmonic-acid
Article | Year |
---|---|
Jasmonic acid-induced NO activates MEK1/2 in regulating the metabolism of ascorbate and glutathione in maize leaves.
This study investigated the relationship between MEK1/2 and nitric oxide (NO) in jasmonic acid (JA)-regulated metabolism of ascorbate and glutathione in maize leaves. The results showed that JA increased the activities of APX, GR, MDHAR, DHAR, GalLDH, and γ-ECS; the contents of AsA and GSH; and the production of NO. Above increases except for γ-ECS activity and NO production were all suppressed by pre-treatments with MEK1/2 inhibitors PD98059 and U0126. Above increases were all suppressed by pre-treatments with nitric oxide synthase (NOS) inhibitor L-NAME and NO scavenger cPTIO. The results of western blot showed that JA enhanced the phosphorylation level of MEK1/2. Pre-treatments with L-NAME and cPTIO suppressed JA-induced phosphorylation level of MEK1/2. Our results suggested that JA-induced NO activated MEK1/2 by increasing the phosphorylation level, which, in turn, resulted in the upregulation of ascorbate and glutathione metabolism in maize leaves. Topics: Ascorbic Acid; Benzoates; Butadienes; Cyclopentanes; Flavonoids; Glutathione; Imidazoles; Mitogen-Activated Protein Kinase Kinases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitriles; Oxylipins; Phosphorylation; Plant Leaves; Zea mays | 2018 |
Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets.
Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production.. Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa.. Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary interaction with the SA signaling pathway. Topics: Antioxidants; Atractylodes; Benzoates; Catalase; Cyclopentanes; Endophytes; Enzyme Inhibitors; Free Radical Scavengers; Fungi; Hydrogen Peroxide; Imidazoles; Indans; Masoprocol; Nitric Oxide; Oils, Volatile; Onium Compounds; Organophosphonates; Oxylipins; Plant Diseases; Plants, Medicinal; Salicylic Acid; Signal Transduction; Time Factors; Triazoles | 2012 |
Nitric oxide negatively modulates wound signaling in tomato plants.
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis. Topics: Benzoates; Cyclopentanes; Hydrogen Peroxide; Imidazoles; Nitric Oxide; Nitric Oxide Donors; Nitroprusside; Oligosaccharides; Oxylipins; Peptides; Plant Proteins; S-Nitroso-N-Acetylpenicillamine; Signal Transduction; Solanum lycopersicum; Stress, Mechanical | 2002 |