1-3-6-8-tetrahydroxynaphthalene has been researched along with flaviolin* in 7 studies
7 other study(ies) available for 1-3-6-8-tetrahydroxynaphthalene and flaviolin
Article | Year |
---|---|
Effects of exogenous nutrients on polyketide biosynthesis in Escherichia coli.
Heterologous hosts are important platforms for engineering natural product biosynthesis. Escherichia coli is such a host widely used for expression of various biosynthetic enzymes. While numerous studies have been focused on optimizing the expression conditions for desired functional proteins, this work describes how supplement of exogenous nutrients into the fermentation broth influences the formation of natural products in E. coli. A type III polyketide synthase gene stts from Streptomyces toxytricini NRRL 15443 was heterogeneously expressed in E. coli BL21(DE3). This enzyme uses five units of malonyl-CoA to generate a polyketide 1,3,6,8-tetrahydroxynaphthalene, which can be spontaneously oxidized into a red compound flaviolin. In this work, we manipulated the fermentation broth of E. coli BL21(DE3)/pET28a-stts by supplying different nutrients including glucose and sodium pyruvate at different concentrations, from which six flaviolin derivatives 1-6 were produced. While addition of glucose yielded the production of 1-4, supplement of sodium pyruvate into the induced broth of E. coli BL21(DE3)/pET28a-stts resulted in the synthesis of 5 and 6, suggesting that different nutrients may enable E. coli to generate different metabolites. These products were purified and structurally characterized based on the spectral data, among which 2-6 are novel compounds. These molecules were formed through addition of different moieties such as acetone and indole to the flaviolin scaffold. The concentrations of glucose and sodium pyruvate and incubation time affect the product profiles. This work demonstrates that supplement of nutrients can link certain intracellular metabolites to the engineered biosynthetic pathway to yield new products. It provides a new approach to biosynthesizing novel molecules in the commonly used heterologous host E. coli. Topics: Acyltransferases; Biosynthetic Pathways; Culture Media; Escherichia coli; Fermentation; Glucose; Malonyl Coenzyme A; Naphthols; Naphthoquinones; Polyketides; Pyruvic Acid; Streptomyces | 2015 |
Biochemical characterization of a type III polyketide biosynthetic gene cluster from Streptomyces toxytricini.
A type III polyketide biosynthetic gene cluster has been discovered in the industrially important strain Streptomyces toxytricini NRRL 15443, including four genes stp450-1, stts, stp450-2, and stmo. The stts gene encodes a putative type III polyketide synthase that is homologous to RppA, a 1,3,6,8-tetrahydroxynaphthalene (THN) synthase from Streptomyces griseus. The deduced protein product of stmo resembles the cupin-containing monooxygenase MomA from Streptomyces antibioticus that oxidizes THN into flaviolin. Two cytochrome P450s (CYPs), StP450-1 and StP450-2, are present in the gene cluster. StTS was overexpressed in Escherichia coli BL21(DE3) and identified as a THN synthase. The synthesized THN can be easily oxidized into flaviolin by air. Both CYPs were reconstituted in E. coli BL21(DE3) and can oxidize flaviolin to form oligomers. The k(cat)/K(m) values for StP450-1 and StP450-2 were 0.28 and 0.71 min⁻¹ mM⁻¹, respectively. UV irradiation test showed that expression of StTS in E. coli BL21(DE3) significantly protects the cells from UV radiation, and coexpression of StTS and StP450-1 provides even stronger protection. Topics: Acyltransferases; Amino Acid Sequence; Bacterial Proteins; Cloning, Molecular; Cytochrome P-450 Enzyme System; Escherichia coli; Gene Expression; Isoenzymes; Mixed Function Oxygenases; Molecular Sequence Data; Multigene Family; Naphthols; Naphthoquinones; Oxidation-Reduction; Plasmids; Radiation-Protective Agents; Sequence Alignment; Streptomyces; Streptomyces griseus; Ultraviolet Rays | 2012 |
Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea.
Industrial overproducing strains present unique hosts for expression of heterologous gene clusters encoding secondary metabolite biosynthesis. For this purpose, efficient gene expression tools and methods are needed. A robust and versatile reporter system based on the rppA gene from Saccharopolyspora erythraea is presented as the method of choice when studying gene expression in actinomycete hosts. The method is easily scalable to accommodate high-throughput procedure, and collected samples can be easily stored and re-tested when needed. The product of RppA is an inert 1,3,6,8-tetrahydroxynaphthalene which spontaneously oxidises to a dark-red quinone flaviolin providing a qualitative visual assessment of gene expression on an agar plate as well as a quantitative spectrophotometric measurement in liquid broth without the need for invasive procedures or external substrate addition. The applicability of the reporter system has been demonstrated by expressing the rppA gene under the control of the heterologous promoters actII-ORF4/PactI, ermE and its upregulated variant ermE*. The model streptomycete Streptomyces coelicolor, and three industrially important species, Streptomyces tsukubaensis (FK506), Streptomyces cinnamonensis (monensin) and Streptomyces rimosus (oxytetracycline) were used as hosts. The reporter system has shown its utility independently of cultivation conditions or composition of growth medium, from simple laboratory to complex industrial media. The simplicity and robustness of the system, demonstrated even in industrial settings, shows great potential for wider use in different microbial hosts and applications, and may thus represent a new generic and versatile tool useful to a wider scientific community. Topics: Acyltransferases; Gene Expression; Genes, Reporter; Naphthols; Naphthoquinones; Oxidation-Reduction; Recombinant Proteins; Saccharopolyspora; Spectrophotometry; Streptomyces | 2010 |
Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.
We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). Topics: Acyltransferases; Amino Acid Sequence; Chromatography, High Pressure Liquid; Electrophoresis, Polyacrylamide Gel; Molecular Sequence Data; Naphthols; Naphthoquinones; Phenotype; Sequence Alignment; Sequence Analysis, Protein; Spectrometry, Mass, Electrospray Ionization; Streptomyces | 2008 |
Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates.
In bacteria, a structurally simple type III polyketide synthase (PKS) known as 1,3,6,8-tetrahydroxynaphthlene synthase (THNS) catalyzes the iterative condensation of five CoA-linked malonyl units to form a pentaketide intermediate. THNS subsequently catalyzes dual intramolecular Claisen and aldol condensations of this linear intermediate to produce the fused ring tetrahydroxynaphthalene (THN) skeleton. The type III PKS-catalyzed polyketide extension mechanism, utilizing a conserved Cys-His-Asn catalytic triad in an internal active site cavity, is fairly well understood. However, the mechanistic basis for the unusual production of THN and dual cyclization of its malonyl-primed pentaketide is obscure. Here we present the first bacterial type III PKS crystal structure, that of Streptomyces coelicolor THNS, and identify by mutagenesis, structural modeling, and chemical analysis the unexpected catalytic participation of an additional THNS-conserved cysteine residue in facilitating malonyl-primed polyketide extension beyond the triketide stage. The resulting new mechanistic model, involving the use of additional cysteines to alter and steer polyketide reactivity, may generally apply to other PKS reaction mechanisms, including those catalyzed by iterative type I and II PKS enzymes. Our crystal structure also reveals an unanticipated novel cavity extending into the "floor" of the traditional active site cavity, providing the first plausible structural and mechanistic explanation for yet another unusual THNS catalytic activity: its previously inexplicable extra polyketide extension step when primed with a long acyl starter. This tunnel allows for selective expansion of available active site cavity volume by sequestration of aliphatic starter-derived polyketide tails, and further suggests another distinct protection mechanism involving maintenance of a linear polyketide conformation. Topics: Acyltransferases; Asparagine; Aspartic Acid; Binding Sites; Catalysis; Catalytic Domain; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Codon; Crystallography, X-Ray; Cysteine; Escherichia coli; Evolution, Molecular; Hydrogen-Ion Concentration; Magnetic Resonance Spectroscopy; Models, Chemical; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Naphthols; Naphthoquinones; Oxalic Acid; Polyketide Synthases; Protein Conformation; Protein Structure, Tertiary; Serine; Streptomyces; Streptomyces coelicolor | 2004 |
Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea.
The soluble, diffusible red-brown pigment produced by a Saccharopolyspora erythraea "red variant" has been shown to contain glycosylated and polymerized derivatives of 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). Flaviolin is a spontaneous oxidation product of 1,3,6,8-tetrahydroxynaphthalene (THN), which is biosynthesized in bacteria by a chalcone synthase-like (CS-like) type III polyketide synthase (PKS). A fragment of the gene responsible for THN biosynthesis in S. erythraea E_8-7 was amplified by polymerase chain reaction (PCR) using degenerate primers based on conserved regions of known plant CS and bacterial CS-like genes. From the isolated fragment, a suicide vector was prepared, which was subsequently used to disrupt the red-brown pigment-producing (rpp) locus in S. erythraea, generating a mutant that displayed an albino phenotype. Chromosomal DNA from the albino mutant was subsequently used in a vector-recapture protocol to isolate a plasmid that contained an insert spanning the entire rpp locus. Sequencing of the insert revealed that the disrupted open reading frame (ORF) encodes a CS-like protein displaying 69% sequence identity to the rppA gene of Streptomyces griseus. The S. griseus rppA gene encodes RppA, the first characterized bacterial CS-like protein, which is sufficient in vitro for the synthesis of THN from malonyl-CoA. The rppA disruption mutant and rppA sequence provided a means by which to address the mechanism of diffusible pigment biosynthesis, as well as to investigate any link between this and the modulation of erythromycin A titre, which has been observed for S. erythraea variants. Topics: Bacterial Proteins; Cloning, Molecular; DNA Primers; Molecular Sequence Data; Molecular Structure; Multienzyme Complexes; Mutation; Naphthols; Naphthoquinones; Operon; Phenotype; Phylogeny; Pigments, Biological; Saccharopolyspora | 2002 |
Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1.
The Colletotrichum lagenarium PKS1 gene encoding iterative type I polyketide synthase of 1,3,6,8-tetrahydroxynaphthalene (T4HN) was overexpressed in Aspergillus oryzae. SDS-PAGE analysis of the cell-free extract prepared from the transformant showed an intense band of 230000 which corresponded to the molecular weight of the deduced PKS1 protein. By using this cell-free extract, in vitro synthesis of T4HN was successfully confirmed as the first example of the fungal multi-aromatic ring polyketide synthase activity ever detected. To identify the starter unit for T4HN synthesis, (14)C-labeled acetyl CoA and/or (14)C-labeled malonyl CoA were used as substrates for T4HN synthase reaction. Observed was the incorporation of (14)C label into T4HN solely from malonyl CoA even in the absence of acetyl CoA and not from acetyl CoA. This in vitro result unambiguously identified that malonyl CoA serves as the starter as well as extender units in the formation of T4HN by fungal polyketide synthase PKS1. Topics: Aspergillus oryzae; Cell-Free System; Colletotrichum; Electrophoresis, Polyacrylamide Gel; Fungal Proteins; Malonyl Coenzyme A; Multienzyme Complexes; Naphthols; Naphthoquinones; Recombinant Proteins; Sodium Dodecyl Sulfate | 2000 |