1-2-oleoylphosphatidylcholine has been researched along with pyrene* in 3 studies
3 other study(ies) available for 1-2-oleoylphosphatidylcholine and pyrene
Article | Year |
---|---|
Probing Microscopic Orientation in Membranes by Linear Dichroism.
The cell membrane is an ordered environment, which anisotropically affects the structure and interactions of all of its molecules. Monitoring membrane orientation at a local level is rather challenging but could reward crucial information on protein conformation and interactions in the lipid bilayer. We monitored local lipid ordering changes upon varying the cholesterol concentration using polarized light spectroscopy and pyrene as a membrane probe. Pyrene, with a shape intermediate between a disc and a rod, can detect microscopic orientation variations at the level of its size. The global membrane orientation was determined using curcumin, a probe with nonoverlapping absorption relative to that of pyrene. While the macroscopic orientation of a liquid-phase bilayer decreases with increasing cholesterol concentration, the local orientation is improved. Pyrene is found to be sensitive to the local effects induced by cholesterol and temperature on the bilayer. Disentangling local and global orientation effects in membranes could provide new insights into functionally significant interactions of membrane proteins. Topics: Cholesterol; Curcumin; Light; Lipid Bilayers; Liposomes; Molecular Probes; Phosphatidylcholines; Pyrenes; Spectrum Analysis | 2016 |
Synthesis, characterization and inclusion into liposomes of a new cationic pyrenyl amphiphile.
The aggregation properties of a new cationic fluorescent amphiphile tagged on the hydrophobic tail with a pyrene moiety and bearing two hydroxyethyl functionalities on the polar headgroup were investigated by fluorescence experiments as pure components or in mixed liposomes containing an unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine, at different molar ratios. The obtained results put in evidence that the conformation and the miscibility of the lipids in the aggregates strongly influence the excimer/monomer ratio. Mixed monolayers at the same composition were investigated by Langmuir compression isotherms to deepen the understanding of lipid organization and miscibility, both in the polar and in the hydrophobic regions. The presence of two hydroxyethyl functionalities on the polar headgroup of the newly synthesized amphiphile exerts a shielding effect of the charge of the amphiphile increasing the compressibility of lipid components in contrast with the disturbing effect of the unsaturated acyl chains of the phospholipid. Topics: Cations; Glycerylphosphorylcholine; Hydrophobic and Hydrophilic Interactions; Liposomes; Molecular Structure; Phosphatidylcholines; Pyrenes; Surface-Active Agents | 2016 |
Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations.
The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer/monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl chain lengths. Based on the simulations, we calculate the pyrene dimerization rate and the lateral pressure at the location of the pyrenes. The dimerization rates are compared with the results of di-pyr-PC probes simulated in vacuum. The comparison indicates that the lateral pressure is not the dominant determinant of the excimer/monomer fluorescence ratio. Thus, the results do not support the usage of di-pyr-PC molecules to measure the shape of the lateral pressure profile. We yet discuss how the probes could potentially be exploited to gain qualitative insight of the changes in pressure profile when lipid composition is altered. Topics: Dimerization; Lipid Bilayers; Membrane Lipids; Membrane Proteins; Membranes; Molecular Dynamics Simulation; Phosphatidylcholines; Pressure; Pyrenes | 2014 |