1-2-oleoylphosphatidylcholine has been researched along with phytochlorin* in 2 studies
2 other study(ies) available for 1-2-oleoylphosphatidylcholine and phytochlorin
Article | Year |
---|---|
pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy.
The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the pH of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and 8, and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article. Topics: Chlorophyllides; Hydrogen-Ion Concentration; Lipid Bilayers; Magnetic Resonance Spectroscopy; Phosphatidylcholines; Phospholipids; Porphyrins; Unilamellar Liposomes | 2010 |
The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: a physico-chemical approach.
Decrease in interstitial pH of the tumor stroma and over-expression of low density lipoprotein (LDL) receptors by several types of neoplastic cells have been suggested to be important determinants of selective retention of photosensitizers by proliferative tissues. The interactions of chlorin e6 (Ce6), a photosensitizer bearing three carboxylic groups, with plasma proteins and DOPC unilamellar vesicles are investigated by fluorescence spectroscopy. The binding constant to liposomes, with reference to the DOPC concentration, is 6 x 10(3) M(-1) at pH 7.4. Binding of Ce6 to LDL involves about ten high affinity sites close to the apoprotein and some solubilization in the lipid compartment. The overall association constant is 5.7 x 10(7) M(-1) at pH 7.4. Human serum albumin (HSA) is the major carrier (association constant 1.8 x 10(8) M(-1) at pH 7.4). Whereas the affinity of Ce6 for LDL and liposomes increases at lower pH, it decreases for albumin. Between pH 7.4 and 6.5, the relative affinities of Ce6 for LDL versus HSA, and for membranes versus HSA, are multiplied by 4.6 and 3.5, respectively. These effects are likely driven by the ionization equilibria of the photosensitizer carboxylic chains. Then, the cellular uptake of chlorin e6 may be facilitated by its pH-mediated redistribution within the tumor stroma. Topics: Blood Proteins; Cell Membrane; Chlorophyllides; Humans; Hydrogen-Ion Concentration; Phosphatidylcholines; Porphyrins; Radiation-Sensitizing Agents; Serum Albumin; Spectrometry, Fluorescence; Unilamellar Liposomes | 2007 |