1-2-oleoylphosphatidylcholine has been researched along with epigallocatechin-gallate* in 3 studies
3 other study(ies) available for 1-2-oleoylphosphatidylcholine and epigallocatechin-gallate
Article | Year |
---|---|
Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules.
Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson's disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson's disease. Topics: alpha-Synuclein; Amino Acid Sequence; Catechin; Dopamine; Fluorescence Polarization; Fluorescent Dyes; Humans; Masoprocol; Phosphatidylcholines; Protein Aggregates; Recombinant Proteins; Small Molecule Libraries; Sodium Dodecyl Sulfate; Unilamellar Liposomes; Xanthenes | 2017 |
Stereospecificity in membrane effects of catechins.
Green tea catechins consisting of catechin stereoisomers and their derivatives have been suggested to show biological activities through the interactions with cellular membranes. Their effects on membrane fluidity were comparatively studied by measuring fluorescence polarization of liposomal membranes prepared with phospholipids and cholesterol. All catechin stereoisomers reduced membrane fluidity by acting on the hydrophilic and hydrophobic regions of membrane bilayers at 20-500 microM. Both epicatechins in a cis form were more effective for reducing membrane fluidity than both catechins in a trans form. (-)-Epicatechin, (+)-epicatechin, (-)-catechin and (+)-catechin reduced membrane fluidity in increasing order of intensity. Such difference between optical isomers was increased by chiral cholesterol added to membrane lipids. In reversed-phase chromatographic evaluation, (-)-epicatechin and (+)-epicatechin were more hydrophobic than (-)-catechin and (+)-catechin, although hydrophobicity was not distinguishable between optical isomers. Stereospecificity in the membrane effects of catechin stereoisomers may be induced by the different hydrophobicity of geometrical isomers and the chirality of membrane lipid components. At lower concentrations (5-100 microM), (-)-epigallocatechin gallate and (-)-epicatechin gallate reduced membrane fluidity more significantly than (-)-epicatechin, suggesting that the intensive membrane effect contributes to the potent medicinal utility of (-)-epigallocatechin gallate. Topics: 1-Naphthylamine; 1,2-Dipalmitoylphosphatidylcholine; Anilino Naphthalenesulfonates; Catechin; Chromatography, High Pressure Liquid; Diphenylhexatriene; Flavonoids; Fluorescence Polarization; Fluorescent Dyes; Liposomes; Membrane Fluidity; Membranes, Artificial; Phosphatidylcholines; Stereoisomerism; Structure-Activity Relationship | 2001 |
Effects of green tea catechins on membrane fluidity.
Catechins originating from green tea have been used in plaque inhibition for caries prevention and treatment for liver damage because of their antibacterial activity against cariogenic bacteria and protective activity on hepatic cells. The effects of catechins on membrane fluidity were studied by a fluorescence polarization method using liposomes prepared with dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine to assess their pharmacological mechanism at micromol/l levels found in human body fluids after clinical application. All eight catechins tested, ranging from 1 to 1,000 micromol/l, significantly reduced membrane fluidity in both hydrophilic and hydrophobic regions of lipid bilayers. Catechin gallate esters were superior in fluidity reduction to the corresponding nonesters. The fluidity-reducing degree was different between the cis and trans forms, suggesting the stereospecific activity of catechins. A reference antiplaque agent, chlorhexidine, similarly reduced membrane fluidity at the antibacterial concentration. (+)-Catechin (250 micromol/l) and (-)-epigallocatechin gallate (2.5 micromol/l) significantly prevented the membrane fluidization induced by hepatotoxic chloroform. These results indicate that the reduction in membrane fluidity is responsible for the antiplaque and hepatoprotective effects of green tea catechins. Topics: 1,2-Dipalmitoylphosphatidylcholine; Catechin; Chlorhexidine; Dose-Response Relationship, Drug; Fluorescence Polarization; Humans; Membrane Fluidity; Phosphatidylcholines; Tea | 1999 |